

 1

Divide and Conquer with fork join

1 Introduction

In this practical we are going to stay with the mergesort, using divide and conquer, example that we considered

in the previous practical and implement this parallelism via the Fork/Join implementation strategy. Previously

we considered the distributed memory approach of using a process pool, which itself followed the master

worker pattern, to support the parallelisation of the search algorithm. This required explicit worker

creation/allocation and messaging between tasks to send unsorted and receive sorted data and added

significantly to the complexity of the serial code. In short, it added considerable complexity to the code, but this

is a price we sometimes have to pay to get things running in parallel! In this practical we are limiting ourselves

to a single memory space (a node of ARCHER) – we have less opportunity for large scale parallelism, but the

modifications required are much simpler.

By adopting the fork/join pattern we will see that the code is simpler as OpenMP is well suited to dynamically

creating units of execution which are a crucial aspect of fork/join and in turn support the divide and conquer

algorithm strategy.

2 OpenMP

If you are not so familiar, or a bit rusty, with OpenMP, then a good online resource, which acts as a good

reference manual, can be found at https://computing.llnl.gov/tutorials/openMP/ which should help you with

the implementation of this practical. There is also a recent ARCHER course,

http://www.archer.ac.uk/training/course-material/2018/03/openmp-soton/index.php, which covers all the

concepts needed to complete this practical.

For the Cray compiler (which is the default on ARCHER and used by the provided makefile), no additional

arguments are required. The makefile we have supplied should build the code fine. If you play with this after the

course on your own machines, then you might need to explicitly enable OpenMP directives in the compiler, e.g.

the -fopenmp argument for GCC (and -qopenmp for Intel.)

3 Fork join mergesort

You have been provided with a serial version of the mergesort, mergesort.c and mergesort.F90. Similarly to the

previous practical, there is also a random number generator provided for generating the initial, unsorted,

numbers ran2.c and ran2.F90 along with a Fortran implementation of quicksort qsort.F90 which is used after

the data size reaches a certain minimal threshold. For the C version we instead use the standard qsort function

from stdlib.

Your task is to paralleise this serial code using the non-iterative constructs of OpenMP. You might find it useful

to print out the current thread number (omp_get_thread_num) and the current level of nested parallelism

(omp_get_level) to give you an idea of how threads are being created and used as part of this parallel recursion.

• Because the sort function is recursive, our use of directives represents nested parallelism.

Basically we want to allow for a thread to be further split numerous times on each recursive

https://computing.llnl.gov/tutorials/openMP/
http://www.archer.ac.uk/training/course-material/2018/03/openmp-soton/index.php

 2

call to the function. To support this you will need to call the omp_set_nested(1) function (or

omp_set_nested(.true.) in Fortran) at the start of your code.

• We will first focus on the parallel sections directive, with this construct wrapping both calls

to sort so that each of these is their own section. Effectively this is a non-iterative work

sharing construct and specifies that the enclosed section(s) are to be divide amongst a team

of threads. Using this directive, we can utilise nested parallelism, where a thread from the

team is used for executing each section directive recursively. Therefore, you want two

sections directives, one for each recursive call into the sort function and a parallel sections

wrapping these. For the parallel sections directive, you should also specify what data is

shared between the sections.

• At the end of the parallel sections region of code, your application will block for both

sections to complete. This is effectively fork/join, where each section forks to a separate

thread and then the main thread waits for these to complete (join back up.)

• Timing is provided, see how your newly parallelised version using OpenMP sections to

implement fork/join compares performance wise against the serial code.

• We have assumed, until this point, the creation of two sections – one for each recursive call

to sort. However, this leaves the calling thread idle and potentially wastes resources (the

same reason why we reused one of the workers for the mergesort with a process pool in the

previous practical). Instead, you can just use one section for the first recursive call to sort

and the current thread itself calls into the second sort recursive call. What impact (if any)

does this have on performance?

• You can add some tracking of the OpenMP thread number, nesting level and pivot inside the

sections (see code snippet). Do the reported numbers make sense?

printf ("My id %d my depth %d pivot=%d\n", omp_get_thread_num(),

omp_get_level(), pivot)

Remember, you can specify the maximum number of threads by exporting the environment variable

OMP_NUM_THREADS and for this example you can set some arbitrarily large limit such as 24 which will fill

the cores of a node of ARCHER. In the submission script we automatically set this at 24 for you.

Once you have got the code working and running. you might see some warnings about oversubscription of

threads to cores (and a long runtime!) This is because the OMP_NUM_THREADS variable corresponds to

the number of threads PER PARALLEL REGION. We are using nested parallelism here, where each execution

of the sort function is a new parallel region and as such OpenMP will create this number of threads for every

execution of the function – which we don’t want! Instead, set this to three (i.e. three threads per region

where you have two sections in the sort function) and two where you are re-using the current thread to do

half the sort. What impact does this have on performance?

4 Advanced - Fork/join using OpenMP tasks

As an alternative to sections, one can instead use OpenMP tasks for thread parallelism. Unlike sections,

which block at the end of the parallel sections directive, tasks will queue up and execute whenever possible

(at what is called task scheduling points.) Tasks don’t require the use of nested parallel regions, so you can

avoid oversubscription problems (this is a major benefit of tasks over sections.)

• Define a parallel region around the sort call at the program entry point (main function in

C and the entryPoint procedure in Fortran.) At this point a team of threads will be

 3

created and it is important that not all of them call into sort, but instead only one single

thread and the other threads available to execute tasks. Hence inside this parallel

region, wrap the call to the sort function with the single clause too. This last bit is

important, one of the gotchas with this task approach is that each thread will try to

queue up each task it encounters and-so the single clause is important here.

• Inside the sort function create an OpenMP task for both recursive calls to the sort

function. For each of these tasks you should specify what data is shared between this

and other tasks.

• After issuing tasks in the sort function (at the specific level of the sort), you need to

explicitly wait for these to complete before merging the results. You can do this via the

taskwait clause.

• Again, add some tracking of the OpenMP thread number, nesting level and pivot in the

tasks. Does this make sense?

Now re-run the code, what impact does using tasks have on the overall performance? If you follow the same

extension that you adopted for OpenMP sections, where only one task is created for the first recursive sort

call and the existing task executes the second recursive sort call, what impact does this have on

performance? (Hint: Here you might want to consider experimenting with the taskyield construct too, which

enables OpenMP to swap out the specific task and replace it with other tasks if deemed advantageous.)

• We only have one parallel region up until this point, with tasks being created recursively

by other tasks in this region. It is also possible to create a new parallel region for each

recursive level. This is very simple to do – just move your parallel region and single

clause into the sort function, wrapping the task creation.

• How does the performance and reported OpenMP thread number and nesting level

differ from the previous task version?

5 Advanced – NUMA region effects

If you have experience with OpenMP, then you will be aware that we need to be very careful with Non-Uniform

Memory Access (NUMA) region affects. In ARCHER each processor (12 cores, two processors per node) is a

NUMA region and crucially the memory belonging to one NUMA region is more expensive to access from the

other NUMA region. Codes follow the first touch principal, where a page of memory belongs in the NUMA region

corresponding to the core that first touched it. We have a potential problem in this example – core 0 touches all

the memory when it generates the unsorted values. Hence there is a very high likelihood of experiencing a

performance impact in going from 12 to 24 cores.

Do some experimentation here, do you see a drop off in performance when you use more than one NUNA region

(processor) in ARCHER (e.g. OMP_NUM_THREADS from 12 to 24.) I suggest increasing the number of tasks

because tasks will be mapped to available threads, so you might need to do a big run with a small serial threshold

to get enough tasks so that they are mapped onto the cores of the other NUMA region.

