
Parallel design patterns

ARCHER course
General Overview

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/

About the course

• This is a more abstract course than many others, but we have

plenty of practicals to get hands-on with the concepts

• Many courses take a bottom-up approach

- This course will now look at things from the top, down

• Two important ideas

- Reusable patterns

- All the options we have for applying these

• Typically look at 1 or 2 patterns per lecture

- Abstractly describe and relate to languages, hardware and applications

- Practicals look at implementing patterns

Basis of this course

Patterns for Parallel Programming

Mattson, Sanders, Massingill

Addison Wesley (2005)

ISBN-10: 0321228111

ISBN-13: 978-0321228116

• The closest text to this course

• Covers the same patterns and generally uses the same

terms

Timetable
Day 1

09:30 Intro and Overview

10.00 Comparing parallel

algorithms

10:40 Practical

11:00 Break

11:30 Geometric

decomposition

12:10 Practical

13:00 Lunch

14:00 Recursive data, task
parallelism, divide
and conquer

14:45 Practical

15:30 Break

16:00 Pipelines, event
based coordination

16:45 Practical

17:30 Finish

Day 2

09:30 Actors

10.10 Practical

11:00 Break

11:30 Implementation
strategies,
SPMD, master/worker

12:15 Practical

13:00 Lunch

14:00 Loop parallelism,
Fork/join

14:40 Practical

15:30 Break

16:00 Active messaging and
vectorisation

16:40 Practical

17:30 Finish

Day 3

09:30 Distributed arrays,

shared data, shared

queue

10.15 Intro to case study

10:20 Practical (case study)

11:00 Break

11:30 Practical (case study)

12:30 Summary

13:00 Lunch

14:00 Practical (case study)

15:30 Finish

Plus optional individual

consultancy session to talk

about these concepts in

relation to your area/codes

Day 1

09:30 Intro and Overview

10.00 Comparing parallel algorithms

10:40 Practical (parallelizing pollution code via geometric decomposition)

11:00 Break

11:30 Geometric decomposition

12:10 Practical (parallelizing pollution code via geometric decomposition)

13:00 Lunch

14:00 Recursive data, task parallelism, divide and conquer

14:45 Practical (parallelizing pollution code via geometric decomposition)

15:30 Break

16:00 Pipelines, event based coordination

16:45 Practical (pipelining pollution code)

17:30 Finish

Some terminology
Term Description

Task Sequence of instructions that operate together as a

group which corresponds to some logical part of the

code.

Unit of Execution (UE) To be executed a task needs to be mapped to a unit

of execution – such as a process or a thread. This is

a generic term for a collection of possibly concurrent

executing entities

Processing Element (PE) Some hardware element to execute the UEs. A single

SMP machine might be one PE, whereas in a

distributed machine (such as ARCHER) a PE would

be a node.

Why Patterns?

• Motivation: The same concepts and problem types appear

in many different places

• We don’t want to waste time re-inventing the wheel

• We’d like a common language to talk about “ways of

doing parallelism” between different, non HPC expert,

stake holders

• Languages, machines and applications change frequently

but ideas and concepts recur

• Sometimes start with unfamiliar problem/code, in an area

we know little about. Can help us know where to start.

What is a Design Pattern?

• The idea of a design pattern was first formally described

by the architect Christopher Alexander in the field of

architecture in his 1977 book

• “Each pattern describes a problem that occurs over and

over again in our environment, and then describes the

core of the solution to that problem, in such a way that

you can use this solution a million times over, without

ever doing it the same way twice” – Christopher

Alexander

“Patterns” in common use

• Sharing n things of type t amongst m people

- Doesn’t matter what n, t, and m are

• Sorting algorithms

- As long as you have an ordering amongst any two items, you can

use the same algorithm to sort strings, numbers, whatever.

What is a Design Pattern?
• A description of a problem and a strategy for its solution

expressed in an abstract way independent of language,

hardware, and application

• “A design pattern describes a good solution to a

recurring problem in a particular context” – Mattson et al

• “a design pattern is a general reusable solution to a

commonly occurring problem within a given context” –

Wikipedia

Gang of Four Design Patterns

• First example of Design Patterns used in software

engineering: Beck & Cunningham (1987)

• Design Patterns in the field of software engineering

popularised by the “gang of four”:

- Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

This course is not about the gang of four design patterns!

- Design patterns for parallel codes rather than serial codes

Parallel Design Patterns

• These are design patterns because they are used during

the design of a piece of software or a system

• They should help you to think about a solution to a

problem before any implementation in code

• They are not a process

• There is rarely one right answer and a good design often

boils down to a number of tradeoffs

Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders,

Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1

Parallel Algorithm Strategy &

Implementation Strategy

• Parallel Algorithm Strategy
- aka “Algorithm Structure Design

Space”

• Implementation Strategy
- aka “Supporting Structure Design

Space”

- distinct from “Implementation
Mechanisms Design Space”

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

• Patterns can be grouped into “Strategies” or “Design Spaces”

• The grouping is sometimes referred to as a Pattern

Language

– “Pattern Language - a collection of design patterns, guiding users

through the decision process in building a system”

The focus of this course

• Implementation mechanisms dealt with elsewhere

- Will use implementation technologies (MPI and OpenMP) in the

practicals

- Details of how hardware, operating system and middleware can

implement the parallel algorithm at run-time

- Covered in other ARCHER training courses

On algorithm structure and

supporting structures

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders, Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1

Parallel Algorithm Strategy

• Input information:

- Knowledge of the

problem we are

parallelising/optimising

• E.g. dependencies

amongst tasks and any

implied temporal

constraints

• These patterns can be

thought of as parallel

algorithm templates

• Task Parallelism

• Divide and conquer

• Geometric Decomposition
(Domain decomposition)

• Recursive Data

• Pipelines

• Event-Based Coordination

• Actor pattern

The Algorithm Structure

Design Space

Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks,
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders, Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1

Implementation Strategy

• Usually considered once

the parallel Algorithm

Structure has been

decided

• Can be divided into

Program Structures and

Data Structures

• Master / Worker

• Loop Parallelism

• Fork / Join

• Shared Queue

• SPMD

• Shared Data

• Distributed Array

• Active messaging

• Vectorisation

The Supporting Structures

Design Space

Criticism of Design Patterns
• We think Parallel Design Patterns are a useful

abstraction, however there are some who criticise design

patterns:

• There’s nothing new or special about design patterns;

they just boil down to reusing an idea and making life

easier.

• Writing code to force it to look like a standard pattern can

unnecessarily increase complexity

• The “parallel pattern language” is not standardised

enough to be useful

- There are different names for the patterns and strategies

The importance of evaluation

• Often there are multiple approaches possible

- Evaluate the emerging design and ensure that it is appropriate

- This strategy is an iterative process

• Design quality

- Simplicity

- Flexibility, efficiency

• Suitability for target platform

- How many PEs are available, how is data shared, will the time spent

doing useful work be significantly greater than managing the parallelism

- Sequential equivalence

The earlier you realise an approach isn’t going

to work, the less wasted effort this implies!

