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About the course

• This is a more abstract course than many others, but we have 

plenty of practicals to get hands-on with the concepts

• Many courses take a bottom-up approach

- This course will now look at things from the top, down

• Two important ideas

- Reusable patterns

- All the options we have for applying these

• Typically look at 1 or 2 patterns per lecture

- Abstractly describe and relate to languages, hardware and applications

- Practicals look at implementing patterns



Basis of this course

Patterns for Parallel Programming

Mattson, Sanders, Massingill

Addison Wesley (2005)

ISBN-10: 0321228111

ISBN-13: 978-0321228116

• The closest text to this course

• Covers the same patterns and generally uses the same 

terms



Timetable
Day 1

09:30 Intro and Overview

10.00 Comparing parallel 

algorithms

10:40 Practical

11:00 Break

11:30 Geometric 

decomposition

12:10 Practical

13:00 Lunch

14:00 Recursive data, task 
parallelism, divide 
and conquer

14:45 Practical

15:30 Break

16:00 Pipelines, event 
based coordination

16:45 Practical

17:30 Finish

Day 2

09:30 Actors

10.10 Practical

11:00 Break

11:30 Implementation 
strategies, 
SPMD, master/worker

12:15 Practical

13:00 Lunch

14:00 Loop parallelism, 
Fork/join

14:40 Practical

15:30 Break

16:00 Active messaging and 
vectorisation

16:40 Practical

17:30 Finish

Day 3

09:30 Distributed arrays, 

shared data, shared 

queue

10.15 Intro to case study

10:20 Practical (case study)

11:00 Break

11:30 Practical (case study)

12:30 Summary

13:00 Lunch

14:00 Practical (case study)

15:30 Finish

Plus optional individual 

consultancy session to talk 

about these concepts in 

relation to your area/codes



Day 1

09:30 Intro and Overview

10.00 Comparing parallel algorithms

10:40 Practical (parallelizing pollution code via geometric decomposition)

11:00 Break

11:30 Geometric  decomposition

12:10 Practical (parallelizing pollution code via geometric decomposition)

13:00 Lunch

14:00 Recursive data, task parallelism, divide and conquer

14:45 Practical (parallelizing pollution code via geometric decomposition)

15:30 Break

16:00 Pipelines, event based coordination

16:45 Practical (pipelining pollution code)

17:30 Finish



Some terminology
Term Description

Task Sequence of instructions that operate together as a 

group which corresponds to some logical part of the 

code.

Unit of Execution (UE) To be executed a task needs to be mapped to a unit 

of execution – such as a process or a thread. This is 

a generic term for a collection of possibly concurrent 

executing entities

Processing Element (PE) Some hardware element to execute the UEs. A single 

SMP machine might be one PE, whereas in a 

distributed machine (such as ARCHER) a PE would 

be a node.



Why Patterns?

• Motivation: The same concepts and problem types appear 

in many different places

• We don’t want to waste time re-inventing the wheel

• We’d like a common language to talk about “ways of 

doing parallelism” between different, non HPC expert, 

stake holders

• Languages, machines and applications change frequently 

but ideas and concepts recur

• Sometimes start with unfamiliar problem/code, in an area 

we know little about. Can help us know where to start.



What is a Design Pattern?

• The idea of a design pattern was first formally described 

by the architect Christopher Alexander in the field of 

architecture in his 1977 book

• “Each pattern describes a problem that occurs over and 

over again in our environment, and then describes the 

core of the solution to that problem, in such a way that 

you can use this solution a million times over, without 

ever doing it the same way twice” – Christopher 

Alexander



“Patterns” in common use

• Sharing n things of type t amongst m people

- Doesn’t matter what n, t, and m are

• Sorting algorithms

- As long as you have an ordering amongst any two items, you can 

use the same algorithm to sort strings, numbers, whatever.



What is a Design Pattern?
• A description of a problem and a strategy for its solution 

expressed in an abstract way independent of language, 

hardware, and application

• “A design pattern describes a good solution to a 

recurring problem in a particular context” – Mattson et al

• “a design pattern is a general reusable solution to a 

commonly occurring problem within a given context” –

Wikipedia



Gang of Four Design Patterns

• First example of Design Patterns used in software 

engineering: Beck & Cunningham (1987)

• Design Patterns in the field of software engineering 

popularised by the “gang of four”:

- Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

This course is not about the gang of four design patterns!

- Design patterns for parallel codes rather than serial codes



Parallel Design Patterns

• These are design patterns because they are used during 

the design of a piece of software or a system

• They should help you to think about a solution to a 

problem before any implementation in code

• They are not a process

• There is rarely one right answer and a good design often 

boils down to a number of tradeoffs



Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders, 

Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1



Parallel Algorithm Strategy & 

Implementation Strategy

• Parallel Algorithm Strategy
- aka “Algorithm Structure Design 

Space”

• Implementation Strategy
- aka “Supporting Structure Design 

Space”

- distinct from “Implementation 
Mechanisms Design Space”

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

• Patterns can be grouped into “Strategies” or “Design Spaces”

• The grouping is sometimes referred to as a Pattern 

Language

– “Pattern Language - a collection of design patterns, guiding users 

through the decision process in building a system”



The focus of this course

• Implementation mechanisms dealt with elsewhere

- Will use implementation technologies (MPI and OpenMP) in the 

practicals

- Details of how hardware, operating system and middleware can 

implement the parallel algorithm at run-time

- Covered in other ARCHER training courses

On algorithm structure and 

supporting structures

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …



Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders, Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1



Parallel Algorithm Strategy

• Input information:

- Knowledge of the 

problem we are 

parallelising/optimising

• E.g. dependencies 

amongst tasks and any 

implied temporal 

constraints

• These patterns can be 

thought of as parallel 

algorithm templates

• Task Parallelism

• Divide and conquer

• Geometric Decomposition
(Domain decomposition)

• Recursive Data

• Pipelines

• Event-Based Coordination

• Actor pattern

The Algorithm Structure

Design Space



Patterns in a Design Process

Finding Concurrency

• Task Decomposition, Data Decomposition, Group Tasks, 
Order Tasks, …

Algorithm Structure

• Tasks Parallelism, Divide and Conquer, Geometric 
Decomposition, Recursive Data, …

Supporting Structures

• SPMD, Master/Worker, Loop Parallelism, Fork/Join, …

Implementation Mechanisms

• UE Management, Synchronisation, Communication, …

1 Patterns for Parallel Programming; Mattson, Sanders, Massingill; Addison Wesley (2005)

An example from Patterns for Parallel Programming1



Implementation Strategy

• Usually considered once 

the parallel Algorithm 

Structure has been 

decided

• Can be divided into 

Program Structures and 

Data Structures

• Master / Worker

• Loop Parallelism

• Fork / Join

• Shared Queue

• SPMD

• Shared Data

• Distributed Array

• Active messaging

• Vectorisation

The Supporting Structures

Design Space



Criticism of Design Patterns
• We think Parallel Design Patterns are a useful 

abstraction, however there are some who criticise design 

patterns:

• There’s nothing new or special about design patterns; 

they just boil down to reusing an idea and making life 

easier.

• Writing code to force it to look like a standard pattern can 

unnecessarily increase complexity

• The “parallel pattern language” is not standardised 

enough to be useful

- There are different names for the patterns and strategies



The importance of evaluation

• Often there are multiple approaches possible

- Evaluate the emerging design and ensure that it is appropriate

- This strategy is an iterative process

• Design quality

- Simplicity

- Flexibility, efficiency

• Suitability for target platform

- How many PEs are available, how is data shared, will the time spent 

doing useful work be significantly greater than managing the parallelism

- Sequential equivalence

The earlier you realise an approach isn’t going 

to work, the less wasted effort this implies!


