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Overview
• Motivation

• Potential advantages of MPI + OpenMP

• Problems with MPI + OpenMP

• Styles of MPI + OpenMP programming
• MPI’s thread interface
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Motivation

• With the ubiquity of multicore chips, almost all current CPU systems 
are clustered architectures

• Distributed memory systems, where each node consist of a shared 
memory multiprocessor (SMP).

• Single address space within each node, but separate nodes have 
separate address spaces.  



Programming clusters
• How should we program such a machine? 
• Could use MPI across whole system
• Cannot (in general) use OpenMP/threads across whole 

system
• requires support for single address space
• this is possible in software, but inefficient
• also possible in hardware, but expensive

• Could use OpenMP/threads within a node and MPI 
between nodes
• is there any advantage to this? 



Expectations
• In general, MPI + OpenMP does not improve performance 

(and may be worse!) in the regime where the MPI 
application is scaling well.

• Benefits come when MPI scalability (either in time or 
memory) starts to run out

• MPI +OpenMP may extend scalability to larger core 
counts 
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Typical performance curves
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Potential advantages of MPI + OpenMP

• Reducing memory usage

• Exploiting additional levels of parallelism

• Reducing load imbalance

• Reducing communication costs
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Reducing memory usage
• Some MPI codes use a replicated data strategy

• all processes have a copy of a major data structure 
• Classical domain decomposition codes have replication in 

halos
• MPI internal message buffers can consume significant 

amounts of memory
• A pure MPI code needs one copy per process/core.
• A mixed code would only require one copy per node

• data structure can be shared by multiple threads within a process
• MPI buffers for intra-node messages no longer required

• Will be increasingly important
• amount of memory per core is not likely to increase in future



Effect of domain size on halo storage

Local domain size Halos % of data in halos

503 = 125000 523 – 503 = 15608 11%

203 = 8000 223 – 203 = 2648 25%

103 = 1000 123 – 103 = 728 42%

• Typically, using more processors implies a smaller domain 
size per processor 
– unless the problem can genuinely weak scale

• Although the amount of halo data does decrease as the local 
domain size decreases, it eventually starts to occupy a 
significant amount fraction of the storage
– even worse with deep halos or >3 dimensions 



Exploiting additional levels of parallelism
• Some MPI codes do not scale beyond a certain core 

count because they run of of available parallelism at the 
top level.

• However, there may be additional lower levels of 
parallelism that can be exploited.

• In principle, this could also be done using MPI.
• In practice this can be hard

• The lower level parallelism may be hard to load balance, or have 
irregular (or runtime determined) communication patterns.

• May be hard to work around design decisions in the original MPI 
version.
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• It may, for practical reasons, be easier to exploit the 
additional level(s) of parallelism using OpenMP threads.

• Can take an incremental (e.g. loop by loop) approach to 
adding OpenMP
• maybe not performance optimal, but keeps development cost/time 

to a minimum. 
• Obviously OpenMP parallelism cannot extend beyond a 

single node, but this may be enough
• future systems seem likely to have more cores per nodes, rather 

than many more nodes
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Reducing load imbalance
• Load balancing between MPI processes can be hard

• need to transfer both computational tasks and data from overloaded to 
underloaded processes

• transferring small tasks may not be beneficial 
• having a global view of loads may not scale well
• may need to restrict to transferring loads only between neighbours

• Load balancing between threads is much easier
• only need to transfer tasks, not data
• overheads are lower, so fine grained balancing is possible 
• easier to have a global view

• For applications with load balance problems, keeping the 
number of MPI processes small can be an advantage



Reducing communication costs
• It is natural to suppose that communicating data inside a 

node is faster between OpenMP threads between MPI 
processes.
• no copying into buffers, no library call overheads

• True, but there are lots of caveats – see later. 
• In some cases, MPI codes actually communicate more 

data than is actually required
• where actual data dependencies may be irregular and/or data-

dependent
• makes implementation easier
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Collective communication
• In some circumstances, collective communications can be 

improved by using MPI + OpenMP
• e.g. AllReduce, AlltoAll

• In principle, the MPI implementation ought to be well 
optimised for clustered architectures, but this isn’t always 
the case.
• hard to do for AlltoAllv, for example

• Can be cases where MPI + OpenMP transfers less data
• e.g. AllReduce where every thread contributes to the sum, but only 

the master threads uses the result
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Example
• ECMWF IFS weather forecasting code

• Semi-Lagrangian advection: require data from neighbouring
grid cells only in an upwind direction.

• MPI solution – communicate all the data to neighbouring
processors that could possibly be needed.

• MPI + OpenMP solution – within a node, only read data from 
other threads’ grid point if it is actually required
• Significant reduction in communication costs  
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IFS example
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Problems with MPI + OpenMP
• Development/maintenance costs

• Portability

• Libraries

• Performance pitfalls
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Development / maintenance costs
• In most cases, development and maintenance will be 

harder than for a pure MPI code.

• OpenMP programming is easier than MPI (in general), but 
it’s still parallel programming, and therefore hard!
• application developers need yet another skill set 

• OpenMP (as with all threaded programming) is subject to 
subtle race conditions and non-deterministic bugs
• correctness testing can be hard 



Portability
• Both OpenMP and MPI are themselves highly portable 

(but not perfect). 

• Combined MPI/OpenMP is less so
• main issue is thread safety of MPI 
• if maximum thread safety is assumed, portability will be reduced

• Desirable to make sure code functions correctly (maybe 
with conditional compilation) as stand-alone MPI code 
(and as stand-alone OpenMP code?)



Libraries
• If the pure MPI code uses a distributed-memory library, 

need to replace this with a hybrid version.
• If the pure MPI code uses a sequential library, need to 

replace this with either a threaded version called from the 
master thread, or a thread-safe version called inside 
parallel regions.

• If thread/hybrid library versions use something other than 
OpenMP threads internally, can get problems with 
oversubscription.
• Both the application an the library may create threads that might 

not idle nicely when not being used  
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Performance pitfalls
• Adding OpenMP may introduce additional overheads not present in the 

MPI code (e.g. synchronisation, false sharing, sequential sections, NUMA 
effects).

• Adding OpenMP introduces a tunable parameter – the number of threads 
per MPI process
• optimal value depends on hardware, compiler, input data
• hard to guess the right value without experiments

• Placement of MPI processes and their associated OpenMP threads within 
a node can have performance consequences.



• An incremental, loop by loop approach to adding OpenMP is easy to do, 
but it can be hard to get sufficient parallel coverage.
• just Amdahl’s law applied inside the node

P P P P PP P P P P PP

MPI MPI + OpenMP



More pitfalls...
• The mixed implementation may require more synchronisation than a 

pure OpenMP version, if non-thread-safety of MPI is assumed.
• Implicit point-to-point synchronisation via messages may be replaced 

by (more expensive) barriers. 
• loose thread to thread synchronisation is hard to do in OpenMP

• In the pure MPI code, the intra-node messages will often be naturally 
overlapped with inter-node messages
• harder to overlap inter-thread communication with inter-node messages – see later

• OpenMP codes can suffer from false sharing (cache-to-cache 
transfers caused by multiple threads accessing different words in the 
same cache block)
• MPI naturally avoids this
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NUMA effects
• Nodes which have multiple sockets are NUMA: each socket has it’s 

own block of RAM.
• OS allocates virtual memory pages to physical memory locations

• has to choose a socket for every page

• Common policy (default in Linux) is first touch – allocate on socket 
where the first read/write comes from
• right thing for MPI
• worst possible for OpenMP if data initialisation is not parallelised
• all data goes onto one socket

• NUMA effects can limit the scalability of OpenMP: it may be 
advantageous to run one MPI process per NUMA domain, rather than 
one MPI process per node.
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Process/thread placement
• On NUMA nodes need to make sure that:

• MPI processes are spread out across sockets
• OpenMP threads are on the same socket as their parent process

• Not all batch systems do a good job of this....
• can be hard to fix this as a user
• gets even more complicated if SMT (e.g. Hyperthreads) is used. 
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Styles of MPI + OpenMP programming
• Can identify 4 different styles of MPI + OpenMP

programming, depending on when/how OpenMP threads 
are permitted to make MPI library calls

• Each has its advantages and disadvantages

• MPI has a threading interface which allow the 
programmer to request and query the level of thread 
support
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The 4 styles
• Master-only

• all MPI communication takes place in the sequential part of the OpenMP
program (no MPI in parallel regions)

• Funneled
• all MPI communication takes place through the same (master) thread
• can be inside parallel regions

• Serialized
• only one thread makes MPI calls at any one time
• distinguish sending/receiving threads via MPI tags or communicators
• be very careful about race conditions on send/recv buffers etc.

• Multiple
• MPI communication simultaneously in more than one thread
• some MPI implementations don’t support this
• …and those which do mostly don’t perform well



OpenMP Master-only

!$OMP parallel

work…

!$OMP end parallel

call MPI_Send(…)

!$OMP parallel

work…

!$OMP end parallel

#pragma omp parallel

{

work…

}

ierror=MPI_Send(…);

#pragma omp parallel

{

work… 

}

Fortran C



OpenMP Funneled

!$OMP parallel

… work

!$OMP barrier

!$OMP master

call MPI_Send(…)

!$OMP end master

!$OMP barrier

.. work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp barrier

#pragma omp master

{  

ierror=MPI_Send(…);

}

#pragma omp barrier

… work

}

Fortran C



OpenMP Serialized

!$OMP parallel

… work

!$OMP critical

call MPI_Send(…)

!$OMP end critical

… work

!$OMP end parallel

#pragma omp parallel

{

… work

#pragma omp critical

{  

ierror=MPI_Send(…);

}

… work

}

Fortran C



OpenMP Multiple

!$OMP parallel

… work

call MPI_Send(…)

… work

!$OMP end parallel

#pragma omp parallel

{

… work 

ierror=MPI_Send(…);

… work

}

Fortran C



Thread Safety
• Making MPI libraries thread-safe is difficult

• lock access to data structures
• multiple data structures: one per thread
• …

• Adds significant overheads
• which may hamper standard (single-threaded) codes

• MPI defines various classes of thread usage
• library can supply an appropriate implementation



MPI_Init_thread
• MPI_Init_thread works in a similar way to MPI_Init by initialising MPI on the 

main thread.
• It has two integer arguments:

• Required ([in] Level of desired thread support )
• Provided ([out] Level of provided thread support)

• C syntax
int MPI_Init_thread(int *argc, char *((*argv)[]), int

required, int *provided);

• Fortran syntax
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR



MPI_Init_thread

• MPI_THREAD_SINGLE
• Only one thread will execute. 

• MPI_THREAD_FUNNELED
• The process may be multi-threaded, but only the main thread will make 

MPI calls (all MPI calls are funneled to the main thread). 
• MPI_THREAD_SERIALIZED

• The process may be multi-threaded, and multiple threads may make MPI 
calls, but only one at a time: MPI calls are not made concurrently from two 
distinct threads (all MPI calls are serialized). 

• MPI_THREAD_MULTIPLE
• Multiple threads may call MPI, with no restrictions.



MPI_Init_thread

• These integer values are monotonic; i.e., 
• MPI_THREAD_SINGLE  <  MPI_THREAD_FUNNELED       < 

MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE
• Note that these values do not strictly map on to the 

four MPI/OpenMP Mixed-mode styles as they are more 
general (i.e. deal with Posix threads where we don’t 
have “parallel regions”, etc.)
• e.g. no distinction here between Master-only and Funneled
• see MPI standard for full details



MPI_Query_thread()
• MPI_Query_thread() returns the current level of thread support

• Has one integer argument: provided [in] as defined for MPI_Init_thread() 

• C syntax
int MPI_query_thread(int *provided);

• Fortran syntax
MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

• Need to compare the output manually, i.e.
If (provided < requested) {

printf(“Not a high enough level of thread support!\n”);

MPI_Abort(MPI_COMM_WORLD,1)

…etc.

}



Master-only
• Advantages

• simple to write and maintain 
• clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism
• no concerns about synchronising threads before/after sending 

messages
• Disadvantages

• threads other than the master are idle during MPI calls
• all communicated data passes through the cache where the master 

thread is executing.
• inter-process and inter-thread communication do not overlap.
• only way to synchronise threads before and after message transfers is 

by parallel regions which have a relatively high overhead.
• packing/unpacking of derived datatypes is sequential.



Example

DO I=1,N
A(I) = B(I) + C(I)

END DO

CALL MPI_BSEND(A(N),1,.....)
CALL MPI_RECV(A(0),1,.....) 

DO I = 1,N
D(I) = A(I-1) + A(I) 

END DO 

!$omp parallel do

!$omp parallel do

Intra-node messages 
overlapped with inter-
node

Inter-thread communication 
occurs here

Implicit barrier added here
* nthreads

* nthreads



Funneled
• Advantages

• relatively simple to write and maintain 
• cheaper ways to synchronise threads before and after message 

transfers
• possible for other threads to compute while master is in an MPI call

• Disadvantages
• less clear separation between outer (MPI) and inner (OpenMP) levels of 

parallelism
• all communicated data still passes through the cache where the master 

thread is executing.
• inter-process and inter-thread communication still do not overlap.



OpenMP Funneled with overlapping (1)

Can’t using 
worksharing here!



OpenMP Funneled with overlapping (2)

Higher overheads and 
harder to synchronise 
between teams



Serialised
• Advantages

• easier for other threads to compute while one is in an MPI call
• can arrange for threads to communicate only their “own” data (i.e. the 

data they read and write). 
• Disadvantages

• getting harder to write/maintain
• more, smaller messages are sent, incurring additional latency 

overheads
• need to use tags or communicators to distinguish between messages 

from or to different threads in the same MPI process.  



Distinguishing between threads
• By default, a call to MPI_Recv by any thread in an MPI 

process will match an incoming message from the sender. 
• To distinguish between messages intended for different 

threads, we can use MPI tags
• if tags are already in use for other purposes, this gets messy

• Alternatively, different threads can use different MPI 
communicators
• OK for simple patterns, e.g. where thread N in one process only ever 

communicates with thread N in other processes
• more complex patterns also get messy



Multiple

• Advantages
• Messages from different threads can (in theory) overlap 

• many MPI implementations serialise them internally.
• Natural for threads to communicate only their “own” data
• Fewer concerns about synchronising threads (responsibility passed to 

the MPI library) 
• Disdavantages

• Hard to write/maintain
• Not all MPI implementations support this – loss of portability
• Most MPI implementations don’t perform well like this

• Thread safety implemented crudely using global locks.



Summary
• MPI + OpenMP programming is becoming standard practice

• ~30% of consumed CPU hours on ARCHER 
• Many see it as the key to exascale, however …

• may require MPI_THREAD_MULTIPLE style to reduce overheads
• Achieving correctness is hard

• have to consider race conditions on message buffers
• Achieving performance is hard

• entire application must be threaded (efficiently!)
• Must optimise choice of

• numbers of processes/threads
• placement of processes/threads on NUMA architectures


