
Parallel Models
Different ways to exploit parallelism



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US


Outline

• Shared-Variables Parallelism

- threads

- shared-memory architectures

• Message-Passing Parallelism

- processes

- distributed-memory architectures

• Practicalities

- usage on real HPC architectures

3



Shared Variables

Threads-based parallelism

4



Shared-memory concepts

• Have already covered basic concepts

- threads can all see data of parent process

- can run on different cores

- potential for parallel speedup

5



Analogy

• One very large whiteboard in a two-person office

- the shared memory

• Two people working on the same problem

- the threads running on different cores attached to the memory

• How do they collaborate?

- working together

- but not interfering

• Also need private data

my 

data

shared 

data
my 

data

6



Threads

7

PC PC PCPrivate data Private data Private data

Shared data

Thread 1 Thread 2 Thread 3



Thread 1 Thread 2

mya=23

mya=a+1

23

23 24

Program

Private

data

Shared

data

a=mya

Thread Communication

8



Synchronisation

• Synchronisation crucial for shared variables approach

- thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

- other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

- access shared data as and when its needed

• Getting correct code can be difficult!

9



Specific example

• Computing  asum = a0+ a1 + … a7

- shared:

• main array: a[8]

• result: asum

- private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

- synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

myasum += a[i]

end loop

asum

asum=0

10



Reductions

• A reduction produces a single value from associative operations such as 

addition, multiplication, max, min, and, or. 

asum = 0;

for (i=0; i < n; i++)

asum += a[i];

• Only one thread at a time updating asum removes all parallelism

- each thread accumulates own private copy; copies reduced to give final result.

- if the number of operations is much larger than the number of threads, most of 

the operations can proceed in parallel

• Want common patterns like this to be automated

- not programmed by hand as in previous slide

11



Hardware

• Needs support of a shared-memory architecture

12

Memory

Processor

Shared Bus

Processor Processor Processor Processor

Single Operating System



Thread Placement: Shared Memory

13

OS

User

TTT T T TT TTT T T TTT T



Threads in HPC

• Threads existed before parallel computers

- Designed for concurrency

- Many more threads running than physical cores

• scheduled / descheduled as and when needed

• For parallel computing

- Typically run a single thread per core

- Want them all to run all the time

• OS optimisations

- Place threads on selected cores

- Stop them from migrating

14



Practicalities
• Threading can only operate within a single node

- Each node is a shared-memory computer (e.g. 24 cores on ARCHER)

- Controlled by a single operating system

• Simple parallelisation

- Speed up a serial program using threads

- Run an independent program per node (e.g. a simple task farm)

• More complicated

- Use multiple processes (e.g. message-passing – next)

- On ARCHER: could run one process per node, 24 threads per 

process

• or 2 procs per node / 12 threads per process or 4 / 6 ...

15



Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

- in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

- need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

- supports common parallel patterns

- e.g. loop limits computed by the compiler

- e.g. summing values across threads done automatically

16



Message Passing

Process-based parallelism

17



Analogy

• Two whiteboards in different single-person offices

- the distributed memory

• Two people working on the same problem

- the processes on different nodes attached to the interconnect

• How do they collaborate?

- to work on single problem

• Explicit communication

- e.g. by telephone

- no shared data

my 

data

my 

data

18



a=23 Recv(1,b)

Process 1 Process 2

23

23

24

23

Program

Data

Send(2,a) a=b+1

Process communication

19



Synchronisation

• Synchronisation is automatic in message-passing

- the messages do it for you

• Make a phone call …

- … wait until the receiver picks up

• Receive a phone call

- … wait until the phone rings

• No danger of corrupting someone else’s data

- no shared blackboard

20



Communication modes

• Sending a message can either be synchronous or 

asynchronous

• A synchronous send is not completed until the message 

has started to be received 

• An asynchronous send completes as soon as the 

message has gone

• Receives are usually synchronous - the receiving process 

must wait until the message arrives

21



Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.

22



Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been 

received.

23



Point-to-Point Communications

• We have considered two processes

- one sender

- one receiver

• This is called point-to-point communication

- simplest form of message passing

- relies on matching send and receive

• Close analogy to sending personal emails

24



Message Passing: Collective 

communications

Process-based parallelism

25



Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between 

groups of processes is required

• Can be built from simple messages, but often 

implemented separately, for efficiency

26



Broadcast: one to all communication

27



Broadcast

• From one process to all others

28

8

8 8

8

8

8



Scatter

• Information scattered to many processes

29

0 1 2 3 4 5

0

1

3

4

5

2



Gather

• Information gathered onto one process

30

0 1 2 3 4 5

0

1

3

4

5

2



Reduction Operations

• Combine data from several processes to form a single result

31

Strike?



Reduction

• Form a global sum, product, max, min, etc.

32

0

1

3

4

5

2

15



Hardware

• Natural map to 

distributed-memory

- one process per 

processor-core

- messages go over 

the interconnect, 

between nodes/OS’s 

Processor

Processor

Processor

Processor

Processor

Processor

Processor
Processor

Interconnect

33



Processes: Summary

• Processes cannot share memory

- ring-fenced from each other

- analogous to white boards in separate offices

• Communication requires explicit messages

- analogous to making a phone call, sending an email, …

- synchronisation is done by the messages

• Almost exclusively use Message-Passing  Interface

- MPI is a library of function calls / subroutines

34



Practicalities

How we use the parallel models

35



Practicalities

• 8-core machine might only have 2 
nodes

- how do we run MPI on a real HPC 
machine?

• Mostly ignore architecture

- pretend we have single-core nodes

- one MPI process per processor-core

- e.g. run 8 processes on the 2 nodes

• Messages between processor-
cores on the same node are fast

- but remember they also share access 
to the network

Interconnect

36



Message Passing on Shared Memory

• Run one process per core

- don’t directly exploit shared memory

- analogy is phoning your office mate

- actually works well in practice!

my 

data

my 

data
• Message-passing 

programs run by a 

special job launcher

• user specifies #copies

• some control over 

allocation to nodes

37



Summary

38



Summary

• Shared-variables parallelism

- uses threads

- requires shared-memory machine

- easy  to implement but limited scalability

- in HPC, done using OpenMP compilers

• Distributed memory

- uses processes

- can run on any machine: messages can go over the interconnect

- harder to implement but better scalability

- on HPC, done using the MPI library

39


