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Different ways to exploit parallelism
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Outline

• Shared-Variables Parallelism

- threads

- shared-memory architectures

• Message-Passing Parallelism

- processes

- distributed-memory architectures

• Practicalities

- usage on real HPC architectures
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Shared Variables

Threads-based parallelism
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Shared-memory concepts

• Have already covered basic concepts

- threads can all see data of parent process

- can run on different cores

- potential for parallel speedup
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Analogy

• One very large whiteboard in a two-person office

- the shared memory

• Two people working on the same problem

- the threads running on different cores attached to the memory

• How do they collaborate?

- working together

- but not interfering

• Also need private data
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Threads
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Synchronisation

• Synchronisation crucial for shared variables approach

- thread 2’s code must execute after thread 1

• Most commonly use global barrier synchronisation

- other mechanisms such as locks also available

• Writing parallel codes relatively straightforward

- access shared data as and when its needed

• Getting correct code can be difficult!
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Specific example

• Computing  asum = a0+ a1 + … a7

- shared:

• main array: a[8]

• result: asum

- private:

• loop counter: i

• loop limits: istart, istop

• local sum: myasum

- synchronisation:

• thread0: asum += myasum

• barrier

• thread1: asum += myasum

loop: i = istart,istop

myasum += a[i]

end loop

asum

asum=0
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Reductions

• A reduction produces a single value from associative operations such as 

addition, multiplication, max, min, and, or. 

asum = 0;

for (i=0; i < n; i++)

asum += a[i];

• Only one thread at a time updating asum removes all parallelism

- each thread accumulates own private copy; copies reduced to give final result.

- if the number of operations is much larger than the number of threads, most of 

the operations can proceed in parallel

• Want common patterns like this to be automated

- not programmed by hand as in previous slide
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Hardware

• Needs support of a shared-memory architecture
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Thread Placement: Shared Memory
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Threads in HPC

• Threads existed before parallel computers

- Designed for concurrency

- Many more threads running than physical cores

• scheduled / descheduled as and when needed

• For parallel computing

- Typically run a single thread per core

- Want them all to run all the time

• OS optimisations

- Place threads on selected cores

- Stop them from migrating
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Practicalities
• Threading can only operate within a single node

- Each node is a shared-memory computer (e.g. 24 cores on ARCHER)

- Controlled by a single operating system

• Simple parallelisation

- Speed up a serial program using threads

- Run an independent program per node (e.g. a simple task farm)

• More complicated

- Use multiple processes (e.g. message-passing – next)

- On ARCHER: could run one process per node, 24 threads per 

process

• or 2 procs per node / 12 threads per process or 4 / 6 ...
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Threads: Summary

• Shared blackboard a good analogy for thread parallelism

• Requires a shared-memory architecture

- in HPC terms, cannot scale beyond a single node

• Threads operate independently on the shared data

- need to ensure they don’t interfere; synchronisation is crucial

• Threading in HPC usually uses OpenMP directives

- supports common parallel patterns

- e.g. loop limits computed by the compiler

- e.g. summing values across threads done automatically
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Message Passing

Process-based parallelism
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Analogy

• Two whiteboards in different single-person offices

- the distributed memory

• Two people working on the same problem

- the processes on different nodes attached to the interconnect

• How do they collaborate?

- to work on single problem

• Explicit communication

- e.g. by telephone

- no shared data
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Synchronisation

• Synchronisation is automatic in message-passing

- the messages do it for you

• Make a phone call …

- … wait until the receiver picks up

• Receive a phone call

- … wait until the phone rings

• No danger of corrupting someone else’s data

- no shared blackboard
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Communication modes

• Sending a message can either be synchronous or 

asynchronous

• A synchronous send is not completed until the message 

has started to be received 

• An asynchronous send completes as soon as the 

message has gone

• Receives are usually synchronous - the receiving process 

must wait until the message arrives
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Synchronous send

• Analogy with faxing a letter.

• Know when letter has started to be received.
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Asynchronous send

• Analogy with posting a letter.

• Only know when letter has been posted, not when it has been 

received.
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Point-to-Point Communications

• We have considered two processes

- one sender

- one receiver

• This is called point-to-point communication

- simplest form of message passing

- relies on matching send and receive

• Close analogy to sending personal emails
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Message Passing: Collective 

communications

Process-based parallelism
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Collective Communications

• A simple message communicates between two processes

• There are many instances where communication between 

groups of processes is required

• Can be built from simple messages, but often 

implemented separately, for efficiency
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Broadcast: one to all communication
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Broadcast

• From one process to all others
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Scatter

• Information scattered to many processes

29

0 1 2 3 4 5

0

1

3

4

5

2



Gather

• Information gathered onto one process
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Reduction Operations

• Combine data from several processes to form a single result
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Reduction

• Form a global sum, product, max, min, etc.
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Hardware

• Natural map to 

distributed-memory

- one process per 

processor-core

- messages go over 

the interconnect, 

between nodes/OS’s 

Processor
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Processor

Processor
Processor

Interconnect
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Processes: Summary

• Processes cannot share memory

- ring-fenced from each other

- analogous to white boards in separate offices

• Communication requires explicit messages

- analogous to making a phone call, sending an email, …

- synchronisation is done by the messages

• Almost exclusively use Message-Passing  Interface

- MPI is a library of function calls / subroutines
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Practicalities

How we use the parallel models
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Practicalities

• 8-core machine might only have 2 
nodes

- how do we run MPI on a real HPC 
machine?

• Mostly ignore architecture

- pretend we have single-core nodes

- one MPI process per processor-core

- e.g. run 8 processes on the 2 nodes

• Messages between processor-
cores on the same node are fast

- but remember they also share access 
to the network

Interconnect

36



Message Passing on Shared Memory

• Run one process per core

- don’t directly exploit shared memory

- analogy is phoning your office mate

- actually works well in practice!

my 

data

my 

data
• Message-passing 

programs run by a 

special job launcher

• user specifies #copies

• some control over 

allocation to nodes
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Summary
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Summary

• Shared-variables parallelism

- uses threads

- requires shared-memory machine

- easy  to implement but limited scalability

- in HPC, done using OpenMP compilers

• Distributed memory

- uses processes

- can run on any machine: messages can go over the interconnect

- harder to implement but better scalability

- on HPC, done using the MPI library
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