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Outline

• How we manage software packages & libraries on 
ARCHER

• MPI – distributed memory de-facto standard
- Using MPI

• OpenMP – shared memory de-facto standard
- Using OpenMP

• Other parallel programming technologies
- CUDA, OpenCL, OpenACC

• Examples of common scientific libraries
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The module environment

Managing software packages and libraries
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Module environment

• The module environment allows you to easily load different 

packages and manage different versions of packages.

• Via the module command

- List loaded modules, view available modules,                                    

load and unload modules

user@eslogin001:~> module list
Currently Loaded Modulefiles:

1) modules/3.2.10.2                             9) rca/1.0.0-2.0502.57212.ari
2) eswrap/1.3.3-1.020200.1278.0         10) atp/1.8.3
3) switch/1.0-1.0502.57058.1.58.ari      11) PrgE56
4) craype-network-aries 12) pbs/12.2.401.141761
5) craype/2.4.2                                      13) craype-ivybridge
6) cce/8.4.1                                           14) cray-mpich/7.2.6
7) cray-libsci/13.2.0                              15) packages-archer
8) udreg/2.3.2-1.0502.9889.2.20.ari     16) bolt/0.6
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Using the module environment

user@eslogin001:~> module avail
PrgEnv-cray/5.1.29 PrgEnv-cray/5.2.56(default) PrgEnv-gnu/5.1.29
PrgEnv-intel/5.1.29 PrgEnv-intel/5.2.56(default)cray-mpich/6.3.1
cray-mpich/7.1.1 cray-mpich/7.2.6(default) cray-mpich/7.3.2
cray-netcdf/4.3.3(default) cray-netcdf/4.4.1 cray-petsc/3.5.2.1
cray-petsc/3.6.3.0 cray-petsc/3.6.1.0 (default) cray-petsc/3.7.2.0
fftw/2.1.5.7 fftw/2.1.5.9 fftw/3.3.4.5(default)
fftw/3.3.4.7 fftw/3.3.4.9

user@eslogin001:~> module load fftw
user@eslogin001:~> module unload fftw

user@eslogin001:~> module load fftw/2.1.5.7
user@eslogin001:~> module switch fftw/2.1.5.7 fftw/3.3.4.9

user@eslogin001:~> module swap PrgEnv-cray PrgEnv-gnu
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MPI Library

Distributed, message-passing programming
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Message-passing concepts
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What is MPI?

• Message Passing Interface

• MPI is not a programming language

- There is no such thing as an MPI compiler

• MPI is available as a library of function/subroutine calls

- The library implements the MPI standard

• The C or Fortran compiler knows nothing about what MPI 

actually does

- Just the prototype/interfaces of the functions/subroutine

- It is just another library
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The MPI standard

• MPI itself is a standard

• Agreed upon by approx 100 representatives from about 

40 organisations (the MPI forum)

- Academics

- Industry

- Vendors

- Application developers

• First standard (MPI version 1.0) drafted in 1993

- We are currently on version 3

- Version 4 is being drafted
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MPI Libraries

• The MPI forum defines the standard and vendors/open 

source developers then actually implement this

• There are a number of different implementations but all 

should support version 2.0 or 3.0

- As with compilers there are variations in implementation details but 

all features in the standards should work

- Examples: MPICH and OpenMPI

- Cray-MPICH on ARCHER which implements version 3.1 of the 

standard (optimised for Cray machines, specifically the 

interconnect)
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Features of MPI

• MPI is a portable library used for writing parallel programs 

using the message passing model

- You can expect MPI to be available on any HPC platform you use

- Aids portability between HPC machines and is trivial to install on 

local clusters

• Based on a number of processes running independently 

in parallel

- The HPC resource provides the command to launch the processes 

in parallel (i.e. aprun or mpiexec)

- Can think of each process as an instance of your executable 

communicating with other instances
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Explicit Parallelism

• In message-passing all the parallelism is explicit

- The program includes specific instructions for each communication

- What to send or receive

- When to send or receive

- Synchronisation

• It is up to the developer to design the parallel 

decomposition and implement it

- How will you divide up the problem?

- When will you need to communicate between processes?
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Supported features

• Point to point communications

- Communications involving two processes; a sender and receiver

- Wide variety of semantics involving non-blocking communications 

- Other aspects such as wildcards & custom data types

• Collective communications

- Communication that involves many processes

- Implements all the collective communications we saw in the 

programming models lecture and many more

- Also supports non-blocking communications and custom data types
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Example: MPI HelloWorld

#include “mpi.h”

int main(int argc, char* argv[])
{

int size,rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello world - I'm rank %d of %d\n", rank, size);

MPI_Finalize();
return 0;

}
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OpenMP

Shared-memory parallelism using directives
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Shared-memory concepts
• Threads “communicate” by having access to the same 

memory space

- Any thread can alter any bit of data

- No explicit communications between the parallel tasks

17



OpenMP

• Open Multi Processing

- Application programming interface (API) for shared variable 

programming

• Set of extensions to C, C++ and Fortran

- Compiler directives

- Runtime library functions

- Environment variables

• Not a library interface like MPI

• Uses directives, which are a special line in the source code 

with a meaning understood by the compilers

- Ignored if OpenMP is disabled and it becomes regular sequential code

• This is also a standard (http://openmp.org)
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Features of OpenMP

• Directives define parallel regions in the code
- OpenMP threads are active in these regions and divide the 

workload amongst themselves

• The compiler needs to understand what OpenMP does
- It is responsible for producing the parallel code

- OpenMP supported by all common compilers used in HPC

• Parallelism less explicit than MPI
- You just specify what parts of the program you want to run in 

parallel

• OpenMP version 4.5 is the latest version

• Can be used to program the Xeon Phi
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Loop-based parallelism

• The most common form of OpenMP parallelism is to 
parallelise the work in a loop
- The OpenMP directives tell the compiler to divide the iterations of 

the loop between the threads

#pragma omp parallel shared(a,b,c) private(i)

{

#pragma omp for schedule(dynamic) nowait

for (i=0; i < N; i++) {

c[i] = a[i] + b[i];

}

}
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Addition example

asum = 0.0

#pragma omp parallel \

shared(a,N) private(i) \

reduction(+:asum)

{

#pragma omp for

for (i=0; i < N; i++)

{

asum += a[i];

}

}

printf(“asum = %f\n”, asum);

loop: i = istart,istop

myasum += a[i]

end loop

asum

asum=0
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Other parallel programming technologies

Programming accelerators and less common technologies
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CUDA

• CUDA is an Application Program Interface (API) 

for programming NVIDIA GPU accelerators

- Proprietary software provided by NVIDIA. Should be 

available on all systems with NVIDIA GPU 

accelerators

- Write GPU specific functions called kernels

• Launch kernels using syntax within standard C programs

• Includes functions to shift data between CPU and GPU memory

• Similar to OpenMP programming in many ways in that the 

parallelism is implicit in the kernel design and launch
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OpenCL

• An open, cross-platform standard for programming 

accelerators

- includes GPUs, e.g. from both NVIDIA and AMD

- also Xeon Phi, Digital Signal Processors, ...

• Comprises a language + library

• Harder to write than CUDA if you have NVIDIA GPUs

- but portable across multiple platforms

- although maintaining performance is difficult
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Other parallel implementations

• Partitioned Global Address Space 

(PGAS)

- Coarray Fortran, Unified Parallel C, 

Chapel

• Cray SHMEM, OpenSHMEM

- Single-sided communication library 

• OpenACC

- Directive-based approach for 

programming accelerators

25



Common scientific parallel libraries

Two examples commonly used on HPC machines
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PETSc

• Unlike many serial libraries, 

you the programmer are 

responsible for 

performance & scalability.

• Portable Extensible Toolkit for Scientific Computation

• Suite of data structures & routines for the parallel and scalable 

solution of PDEs

• The programmer uses the library framework itself which under the 

hood will use parallel technologies MPI, OpenMP and/or CUDA.
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NetCDF

• Network Common Data Form

- Self describing, machine independent file data format and 

implementation that is very common for writing and reading 

scientific data 

• Parallel version supporting parallel IO

- Multiple processes/threads can read and write to a file concurrently

- Built on top of MPI

• Many third party tools such as visualisation suites

• Again requires user understanding, both from the 

programmer and also the user (file configuration options)
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Summary
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Parallel and scientific libraries

• The module environment is an easy way of managing 
many different software packages, their dependencies 
and different versions.

• Distributed memory programmed using MPI

• Shared memory programmed using OpenMP

• GPU accelerators most often programmed using CUDA

• There are very many software packages installed on 
ARCHER, but scientific libraries often require in-depth 
knowledge and understanding to get good performance.
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