
Parallel Programming
Libraries and implementations

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• How we manage software packages & libraries on
ARCHER

• MPI – distributed memory de-facto standard
- Using MPI

• OpenMP – shared memory de-facto standard
- Using OpenMP

• Other parallel programming technologies
- CUDA, OpenCL, OpenACC

• Examples of common scientific libraries

3

The module environment

Managing software packages and libraries

4

Module environment

• The module environment allows you to easily load different

packages and manage different versions of packages.

• Via the module command

- List loaded modules, view available modules,

load and unload modules

user@eslogin001:~> module list
Currently Loaded Modulefiles:

1) modules/3.2.10.2 9) rca/1.0.0-2.0502.57212.ari
2) eswrap/1.3.3-1.020200.1278.0 10) atp/1.8.3
3) switch/1.0-1.0502.57058.1.58.ari 11) PrgE56
4) craype-network-aries 12) pbs/12.2.401.141761
5) craype/2.4.2 13) craype-ivybridge
6) cce/8.4.1 14) cray-mpich/7.2.6
7) cray-libsci/13.2.0 15) packages-archer
8) udreg/2.3.2-1.0502.9889.2.20.ari 16) bolt/0.6

5

Using the module environment

user@eslogin001:~> module avail
PrgEnv-cray/5.1.29 PrgEnv-cray/5.2.56(default) PrgEnv-gnu/5.1.29
PrgEnv-intel/5.1.29 PrgEnv-intel/5.2.56(default)cray-mpich/6.3.1
cray-mpich/7.1.1 cray-mpich/7.2.6(default) cray-mpich/7.3.2
cray-netcdf/4.3.3(default) cray-netcdf/4.4.1 cray-petsc/3.5.2.1
cray-petsc/3.6.3.0 cray-petsc/3.6.1.0 (default) cray-petsc/3.7.2.0
fftw/2.1.5.7 fftw/2.1.5.9 fftw/3.3.4.5(default)
fftw/3.3.4.7 fftw/3.3.4.9

user@eslogin001:~> module load fftw
user@eslogin001:~> module unload fftw

user@eslogin001:~> module load fftw/2.1.5.7
user@eslogin001:~> module switch fftw/2.1.5.7 fftw/3.3.4.9

user@eslogin001:~> module swap PrgEnv-cray PrgEnv-gnu

6

MPI Library

Distributed, message-passing programming

7

Message-passing concepts

8

What is MPI?

• Message Passing Interface

• MPI is not a programming language

- There is no such thing as an MPI compiler

• MPI is available as a library of function/subroutine calls

- The library implements the MPI standard

• The C or Fortran compiler knows nothing about what MPI

actually does

- Just the prototype/interfaces of the functions/subroutine

- It is just another library

9

The MPI standard

• MPI itself is a standard

• Agreed upon by approx 100 representatives from about

40 organisations (the MPI forum)

- Academics

- Industry

- Vendors

- Application developers

• First standard (MPI version 1.0) drafted in 1993

- We are currently on version 3

- Version 4 is being drafted

10

MPI Libraries

• The MPI forum defines the standard and vendors/open

source developers then actually implement this

• There are a number of different implementations but all

should support version 2.0 or 3.0

- As with compilers there are variations in implementation details but

all features in the standards should work

- Examples: MPICH and OpenMPI

- Cray-MPICH on ARCHER which implements version 3.1 of the

standard (optimised for Cray machines, specifically the

interconnect)

11

Features of MPI

• MPI is a portable library used for writing parallel programs

using the message passing model

- You can expect MPI to be available on any HPC platform you use

- Aids portability between HPC machines and is trivial to install on

local clusters

• Based on a number of processes running independently

in parallel

- The HPC resource provides the command to launch the processes

in parallel (i.e. aprun or mpiexec)

- Can think of each process as an instance of your executable

communicating with other instances

12

Explicit Parallelism

• In message-passing all the parallelism is explicit

- The program includes specific instructions for each communication

- What to send or receive

- When to send or receive

- Synchronisation

• It is up to the developer to design the parallel

decomposition and implement it

- How will you divide up the problem?

- When will you need to communicate between processes?

13

Supported features

• Point to point communications

- Communications involving two processes; a sender and receiver

- Wide variety of semantics involving non-blocking communications

- Other aspects such as wildcards & custom data types

• Collective communications

- Communication that involves many processes

- Implements all the collective communications we saw in the

programming models lecture and many more

- Also supports non-blocking communications and custom data types

14

Example: MPI HelloWorld

#include “mpi.h”

int main(int argc, char* argv[])
{

int size,rank;

MPI_Init(&argc, &argv);
MPI_Comm_size(MPI_COMM_WORLD, &size);
MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Hello world - I'm rank %d of %d\n", rank, size);

MPI_Finalize();
return 0;

}

15

OpenMP

Shared-memory parallelism using directives

16

Shared-memory concepts
• Threads “communicate” by having access to the same

memory space

- Any thread can alter any bit of data

- No explicit communications between the parallel tasks

17

OpenMP

• Open Multi Processing

- Application programming interface (API) for shared variable

programming

• Set of extensions to C, C++ and Fortran

- Compiler directives

- Runtime library functions

- Environment variables

• Not a library interface like MPI

• Uses directives, which are a special line in the source code

with a meaning understood by the compilers

- Ignored if OpenMP is disabled and it becomes regular sequential code

• This is also a standard (http://openmp.org)

18

Features of OpenMP

• Directives define parallel regions in the code
- OpenMP threads are active in these regions and divide the

workload amongst themselves

• The compiler needs to understand what OpenMP does
- It is responsible for producing the parallel code

- OpenMP supported by all common compilers used in HPC

• Parallelism less explicit than MPI
- You just specify what parts of the program you want to run in

parallel

• OpenMP version 4.5 is the latest version

• Can be used to program the Xeon Phi

19

Loop-based parallelism

• The most common form of OpenMP parallelism is to
parallelise the work in a loop
- The OpenMP directives tell the compiler to divide the iterations of

the loop between the threads

#pragma omp parallel shared(a,b,c) private(i)

{

#pragma omp for schedule(dynamic) nowait

for (i=0; i < N; i++) {

c[i] = a[i] + b[i];

}

}

20

Addition example

asum = 0.0

#pragma omp parallel \

shared(a,N) private(i) \

reduction(+:asum)

{

#pragma omp for

for (i=0; i < N; i++)

{

asum += a[i];

}

}

printf(“asum = %f\n”, asum);

loop: i = istart,istop

myasum += a[i]

end loop

asum

asum=0

21

Other parallel programming technologies

Programming accelerators and less common technologies

22

CUDA

• CUDA is an Application Program Interface (API)

for programming NVIDIA GPU accelerators

- Proprietary software provided by NVIDIA. Should be

available on all systems with NVIDIA GPU

accelerators

- Write GPU specific functions called kernels

• Launch kernels using syntax within standard C programs

• Includes functions to shift data between CPU and GPU memory

• Similar to OpenMP programming in many ways in that the

parallelism is implicit in the kernel design and launch

23

OpenCL

• An open, cross-platform standard for programming

accelerators

- includes GPUs, e.g. from both NVIDIA and AMD

- also Xeon Phi, Digital Signal Processors, ...

• Comprises a language + library

• Harder to write than CUDA if you have NVIDIA GPUs

- but portable across multiple platforms

- although maintaining performance is difficult

24

Other parallel implementations

• Partitioned Global Address Space

(PGAS)

- Coarray Fortran, Unified Parallel C,

Chapel

• Cray SHMEM, OpenSHMEM

- Single-sided communication library

• OpenACC

- Directive-based approach for

programming accelerators

25

Common scientific parallel libraries

Two examples commonly used on HPC machines

26

PETSc

• Unlike many serial libraries,

you the programmer are

responsible for

performance & scalability.

• Portable Extensible Toolkit for Scientific Computation

• Suite of data structures & routines for the parallel and scalable

solution of PDEs

• The programmer uses the library framework itself which under the

hood will use parallel technologies MPI, OpenMP and/or CUDA.

27

NetCDF

• Network Common Data Form

- Self describing, machine independent file data format and

implementation that is very common for writing and reading

scientific data

• Parallel version supporting parallel IO

- Multiple processes/threads can read and write to a file concurrently

- Built on top of MPI

• Many third party tools such as visualisation suites

• Again requires user understanding, both from the

programmer and also the user (file configuration options)

28

Summary

29

Parallel and scientific libraries

• The module environment is an easy way of managing
many different software packages, their dependencies
and different versions.

• Distributed memory programmed using MPI

• Shared memory programmed using OpenMP

• GPU accelerators most often programmed using CUDA

• There are very many software packages installed on
ARCHER, but scientific libraries often require in-depth
knowledge and understanding to get good performance.

30

