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Looking at Design



Motivation
• Is there a ‘Software Crisis’?
• Many software projects are unsatisfactory

• lots fail to meet their design goals
• lots exceed budget or time constraints significantly 
• some are total disasters and are abandoned at huge cost
• see Computer Weekly for regular examples of software disasters

• often paid for by the taxpayer!
• e.g. air traffic control, health software, passport office

• Many reasons for software project failure
• but good software design is a critical weapon against such problems
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Design Goals
• Functional goals

• ‘what it does’
• e.g. the item must transport at least one person
• e.g. the item must allow someone to stay warm in winter

• Performance goals
• ‘how well it does it’
• e.g. the item must have a top speed of at least 30 mph
• e.g. the item must not be heavier than 0.25 kg

• A ‘good’ final item is one which satisfies the design goals
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The Big 3 Design Criteria
• 1. Detail

• how approximate is the design?

• 2. Intersection
• how much common ground is there between the design and a good final 

item?

• 3. Merit
• how many desirable properties does the design have?
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Design Merit

• Pick any 3 items (‘real-world’ or software) which have 
impressed you in some way

• What desirable properties did they have?
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Design Merit

• Now pick any 3 items (‘real-world’ or software) which did 
not impress you

• What didn’t you like about them?



Early Design
• What happens if the last design before coding is poor or 

non-existent?
• you’ll be coding without a clear idea of what you’re trying to achieve 

and why and how
• you’ll be moving to fiddly detail before getting the basics sorted

• You need to walk before you run
• you’ll hit problems continuously, and fixing them will be costly

• The later a change is, the more expensive
• everything will take longer and the outcome will be poorer
• A big reason for failure and overspending
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Early Design
• 1. Requirements Capture

• “what exactly is the problem we’re trying to solve?”
• analyse the problem and establish the design goals
• results in a requirements document

• 2. Functionality Design
• “what’s the solution going to do?”
• functionality and user interface
• results in a functional specification document

• 3. System Design
• “how’s it going to do it?”
• system architecture and detailed design to some level
• results in a system design document
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Requirements Capture
• “What exactly is the problem we’re trying to solve?”
• Aim to produce a Requirements document including:

• Problem Statement
• Functional Goals

• Basic
• Secondary
• Enhancements

• Performance Goals
• Non-functional Requirements
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Obtaining Information
• Who is your ‘customer’?

• external organisation
• internal department
• funding body 
• research colleague
• focus on whoever gives the ‘thumbs-up’ at the end

• Use all appropriate means to probe for accurate detailed 
information about the problem
• face to face discussions
• observation of existing system (if any)
• study of existing documentation (if any)
• questionnaires
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The Unreliable Narrator
• Customers are like unreliable narrators in novels

• you may get a mixture of truths, half-truths and outright falsehoods!
• you may get conflicting information

• particularly when several people have a say
• information may be withheld (inadvertently or otherwise)

• But if the software solves the wrong problem, the customer 
will blame you!

• So try to untangle the requirements mess as early as 
possible
• probe into the dark corners
• overturn the stones

15



Cans of Worms
• Retailer: “I want a simple program to print out reports of all my 

current stock”
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– what's the input data?
– how's it going to be entered?  manually?  bar-code swiping?
– how is the stock data to be stored?
– what sort of reports do you want?  sorted?  grouped?
– how often do you want them generated?
– what if it takes 5 minutes to generate?  is that too long?
– do you really mean print to a printer or to the screen?
– what if there are reams and reams of it?



The Underlying Problem
• The customer’s perception of the problem may not reflect 

the real underlying problem!
• what the retailer really wanted to know was "Do I have a TX354-2 

out the back?"
• he was going to manually scan through the list of stock until he 

came to TX354-2 in the part number column
• the underlying problem was the ability to query a stock database

• Need to understand the underlying business or technical 
problem that needs to be solved
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Task
• You are asked to create a player trade analysis program 

from scouts, coaches and front office staff in basketball.
• The users want to be able to look at any data for a player 

including motion data and try to predict how they would fit 
in with the plans for the current team.

• This has to make use of NBA statistics available to teams 
and public.

• What questions do you ask?
• What else might you do?
• Who do you look at?



Requirements Summary
• Gather the information you need
• Resolve conflicts and inconsistencies
• Write a clear and concise Requirements document 
• Seek the customer’s approval of the document before 

proceeding

19



Functionality Design
• “What’s the solution going to do?”

• design the behaviour of a system which would satisfy the requirements 
• propose a software solution without worrying unduly (yet) about how to   

build it

• Aim to produce a Functional Specification document including:
• the main features of the user interface 

• and how the user will interact with the UI to achieve their tasks (use model)
• the input data 

• and how the system will modify it
• the main functionality

• and how it will operate on the data in order to satisfy the requirements

20



User Interface Design
• Different user interfaces for different applications
• Designing the main features of the UI early on is highly 

recommended
• UI prototyping

• Balsamiq
• Lumzy
• Pencil
• Pen and Paper
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User Interface Design
• May have to cater for different types of users

• novice users may want to be hand-held through it
• expert users usually want to whiz through it with as few mouse clicks 

as possible

• UI conventions have evolved over the years
• Save your originality for devising intuitive ways of displaying 

data specific to your application domain

22



Use Model
• How will the user accomplish their tasks through the user 

interface?
• consider the various ‘flows’ through the software
• document the sequences of UI interactions necessary
• show what happens to the user’s data (files) on the way

• Can be very helpful
• for clarifying your own ideas about how the system will behave
• for describing to the customer how it will behave
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Emphasis on Data
• In general, customers understand their data

• it’s important and precious to them

• So communicate with them in terms of things they 
understand

• Show them:
• what you think their data is
• what you’re going to do to their data
• what new data you’ll leave them with at the end of the day
• what hoops they’ll have to jump through to get it

• And they’ll tell you if it’s a system they want
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Main Functions
• What are the main functions of the system?
• For each main function describe the following:

• its behaviour
• its input and output data
• how the data is modified by the function

• Use pictures and examples wherever possible
• saves lots of typing, aids understanding
• e.g. a “dog-leg removal” function in a chip layout program
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Design Evolution
• Designing involves two main things:

• 1. having ideas
• 2. realising they’re rubbish (and why they’re rubbish)

• Iterative refinement
• try not to fall in love with your first idea
• through perseverance and cunning you may come up with a 

valuable simplification

• Encourage ‘off the wall’ thinking
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Design Evaluation
• Detail

• have you described the functionality in sufficient detail for it to be 
meaningful?

• “and there will be a graphical user interface” is not sufficient detail!
• Intersection

• will the functionality that you’ve described satisfy the design goals?
• does your functionality solve the right problem?
• is the functionality consistent and coherent?

• Merit
• does the behaviour you’ve described have desirable properties?
• is the system as simple as possible?
• is it intuitive?
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Design Evaluation
• Probing to the next level of detail beyond the level you’re 

documenting can be very useful
• helps establish the quality of what you are documenting

• E.g. “the interpolation facility will operate on the curve data 
which is passed in”
• sounds fine
• but on probing to the next level of detail you discover that the 

interpolation facility also needs a point at which to interpolate the 
curve

• where’s this point going to come from?
• oops - inconsistency exposed
• much cheaper to fix it sooner than later
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Functional Design Summary
• Design the behaviour of your solution

• and prototype the user interface if possible

• Iteratively evolve and improve the design
• focus on the critical features first

• Try to gain confidence in its quality
• evaluate it and get someone else to review it

• Write a clear and concise Functional Specification document 
describing it

• Again seek document approval from the customer
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System Design
• “How’s the solution going to work?”

• how will the documented behaviour be realised in software?

• Aim to produce a System Design document including:
• system architecture

• how the system will be composed of smaller components or modules
• component descriptions

• responsibilities and interfaces
• where will the main functions reside?
• main data structures and algorithms

• solutions to key technical problems
• enough detail that moving to code doesn’t seem like a huge step!
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Components
• Why has this component been defined?

• what’s its purpose?
• ensure the component has clear goals and responsibilities

• Which of the component’s functions will form the interface 
to the outside world?

• Which of the main functions will reside in this component?
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Components
• How will the component’s data be modeled in software?

• arrays, records, structs, objects?
• what will they contain?
• what’s the lifetime of the data?
• who’s responsible for the creation / destruction of which data?

• What are the main algorithms and how will they be 
implemented?
• give pseudo-code if appropriate
• pseudo-code shouldn’t just be verbose normal code!
• Pseudo-code should help not hinder
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Pseudo-Code Example
• Graphics update algorithm
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for each open window, w {
for each of w’s objects, obj {

if obj has been modified since last redraw then {
redraw obj
clear obj’s modified flag

}
}

}



When to Stop?
• When should you stop documenting the system design and 

actually start coding?
• tricky matter of judgement

• Things to ask yourself to see if you’re ready
• are there any parts of the design I’m particularly nervous about?
• is my vision of the system the same as that of my co-developers?
• is there enough design detail for coding to be an orderly guided activity?
• do I think I’m close enough to the top-right corner of the design cube?

• Often worth going to pseudo-code detail for trickier areas first
• quicker than writing and compiling real code
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Write a bit of pseudocode
• Write a piece of pseudocode or other none code based 

description of an algorithm
• Choose one that you know for example, binary search, 

quick sort, how to get the mode of an array or other
• Try not to fall into using programming language



System Design Summary
• Design the architecture of the system
• Design the components and their interactions
• Evolve and improve the design
• Check it relates closely to the Functional Spec
• Write a clear and concise System Design document
• Unlike the Requirements and Functionality documents, this is 

an internal document
• for the benefit of the developers when they start coding in earnest
• customer doesn’t care how it works as long as it does work
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Interim Key Points
• Key Points

• Design is important and ongoing
• Only as document heavy as needed
• Constant Evaluation
• Talk to Clients
• Do not overcomplicate



What is a System
• Definitions:

• A set of things working together as parts of a mechanism or an 
interconnecting network.

• A set of principles or procedures according to which something is 
done

• What do this means for us?
• Its not enough to work inside the boxes and wires
• Impact on and of the wider world



Examples of Systems

• A front door
• A calculator
• An air-conditioning system for a house
• A word processor
• An operating system
• Government
• The Internet
• Taxes
• Humans



Characteristics of Systems
• Interconnections
• Complexity
• Size
• Procedures
• Redundancy?
• Safety?



A Task
In small groups, take five minutes to do the following:
• Think of a system
• Describe why it is a system?
• What are its characteristics?
• Which are innate to the system?
• Which are outside influences?



Boundaries and Interactions
• A key characteristic of a system is that it will have input 

and output beyond itself
• A system is not an isolated thing – it needs other things to 

work
• Where does one system end and another pick up?

• When the processing becomes the responsibility of another
• Transference of control
• Organisation

• What are the interactions of a system?



Interactions
• In System

• Electronic
• In Control

• External to System
• Status
• Input and Output
• Interfacing



Interactions
• Consider these systems for what you would think of as 

interactions

• World of Warcraft
• ATM
• Traffic Monitoring
• Restaurant

• Discuss one of these in small groups and then summarise
the interactions for the rest of the groups



Common High Level Architectures
• layered architectures 

• pipe and filter 

• shared-data 

• Client server

• model-view-controller



Layered Architecture
• System Divided into layers/modules
• Layers provide services to other layers
• Can be open or closed in operation
• Common Layered Architecture:

Presentation Layer
Application Layer
Storage Layer



Layers
• Cohesive definition
• Works well with OOP principles
• Useful for decomposing functionality
• Decrease coupling
• Can affect performance
• Debugging can be awkward
• Getting it right is hard



Another Layer Example



Pipe and Filter
• "The Pipes and Filters architectural pattern provides a 

structure for systems that process a stream of data. Each 
processing step is encapsulated in a filter component. 
Data [are] passed through pipes between adjacent filters. 
Recombining filters allows you to build families of related 
filters.” Pattern-Oriented Software Architecture: A System of Patterns,, Wiley, 1996.



Pipes and Filters
• Intermediate files unnecessary, but possible
• Flexibility by filter exchange. 
• Flexibility by recombination
• Reuse of filter elements. 
• Rapid prototyping of pipelines. 
• Efficiency by parallel processing.
• Sharing state information is expensive or inflexible. 
• Efficiency gain by parallel processing is often an illusion. 
• Data transformation overhead
• Error handling.



Shared Data
• Characterised by one or more shared-data stores used by 

one or more 
• Shared-data accessors (i) store, delete, and modify data 

in shared-data stores and (ii) communicate through 
shared-data stores only 

• Shared-data stores have no knowledge of accessors



Pros and Cons
Pros:
• Accessors, which only communicate through stores, can be independently 

changed, replaced, added, or deleted. 
• The independence of accessors increases program robustness and fault 

tolerance 
• Placing all data in the store makes it easier to secure data and to ensure its 

quality 
Cons:
• Forcing all communication through the store may degrade performance 
• If the store fails, the entire program is crippled; this may be a source of 

unreliability 



Client Server
• A server subsystem instance provides services to 

instances of other subsystem instances (the clients), 
which are responsible for interacting with the user or other 
systems

• Client and Server communicate via a defined set of 
service interfaces

• Client and Server do not have to be implemented in same 
fashion

• The communication is handled by a protocol
• Service definition is key.



Client-Broker-Server
• Extension to the Client Server
• A Broker sits between the Client and the Server
• The Client only knows about the Broker
• The Server talks via the Broker
• Can be used for load balancing
• Additional Security
• Performance can be affected



Peer to Peer
• An extension to Client Server
• Clients can be Servers and vice versa
• Increases possibility of deadlocks
• complicates the control flow
• Allows greater flexibility



MVC



Outside the Computer – Still a System

• Systems are not all in one place
• Need to take into account:

• Common Practice
• Legal
• Reporting
• Human Factors
• Non-computable elements

• Even if you don’t write/develop/suggest something, it can 
still be in the system



Where do you stop?

• A difficult question
• Too soon – system is incomplete and useless
• Too late – system is over-engineered, too expensive, corrupts work 

practices

• Stop once you get to where the client or user is telling you 
to stop

• Stop once you get to the point where you are making 
business decisions



A Task
• Create a high level design for one of the following:

• Fantasy Sports Provider
• House Automation
• E-Learning Platform
• Museum or Art Gallery Archive and Access 
• Online Shop (Amazon or similar)

• Do this in groups and be prepared to summarise for 
everyone your designs.


