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Defects Overview
• Low complexity in software
• Bad code: ugly, inefficient, interdependent
• Interdependency

• Complexity Explosions

• Encapsulation
• Different levels

• Conclusions
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Before Coding
• System Design should have ensured the following:
• Reasonable level of detail
• High intersection

• what features there are should be common to a good final item

• High merit
• low complexity (of what detail we have)
• low difficulty of use

• main features of the user interface should have been planned
• low runtime and space

• main data structures and algorithms should have been planned
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The Code Design Challenge
• Complexity can explode as detail increases
• “The more code you add, the worse things get”
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– bad code starts to appear
– in the short term it’s the easy 

option
– get even worse code when you 

build on top of that
• What’s the solution?

– identify and tackle bad code before 
it cripples the project

• What is bad code?



What is Bad Code?
• Regardless of whether the code behaves correctly, it can 

still be ‘bad’ in a number of ways and lead to ‘scrambled 
egg’

• 1. Ugliness or sloppiness
• 2. Inefficiency
• 3. Interdependency
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1. Ugly or Sloppy Code
• No comments or poor comments
• Cryptic naming
• Messy layout

• inconsistent indentation or spacing

• Huge functions
• more than half a page is probably too long

• Makes extension, debugging and maintenance difficult
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The Cure
• Decide on coding style guidelines up front

• Such as Code Conventions for the Java Programming Language
• Sun’s own code style guide

• Tidy it up according to the guidelines
• Makes maintenance easier
• Can identify problems just by looking at the code
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2. Inefficient Code
• Passing large arguments by value

• More efficient memory use, little copy overheads

• Data duplication
• same data stored in multiple parts of the program
• synchronisation overheads

• Poorly designed algorithms
• Inefficient or unneeded calculations or searches
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The Cure
• Identify problems by observing performance and profiling

• Profile the memory usage to identify problems
• Profile the code to identify bottlenecks

• Design better algorithms
• Do use existing efficient algorithms
• Do not take as ‘gospel’ that they are perfect

• Measure improvement
• Record and replicate all tests
• Show how changes should and do affect performance
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3. Interdependent Code
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• Not all dependencies are bad

– if a function calls other functions, that’s good!
– building functions out of lower-level functions keeps bugs down

– fix the low-level function and all its callers become fixed too 
• Nasty dependencies in programs:

– code dependent on data being in a certain state
– code dependent implicitly on other code

char** buffer = new char*[45];    // Creates an array of 45 string pointers.
…
void printBuffer() {

for (int i = 0; i < 45; i++) …       // Assumes that the size of the array is 45.
}



Dependencies
• Nasty dependencies can be very hard to identify

• by their implicit nature
• makes them hard to identify and pervasive

• Nasty dependencies are very bad for a project
• a change can cause major ripple effects in the software
• leads to unreliability, inconsistency
• makes extension very difficult
• can destroy your schedule and your project!

• Examples then solutions
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Dependency Examples
• Convention dependency

• Positive account numbers belong to individuals, negative 
ones belong to companies

• Get lots of these sprinkled through the code
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if (order.accountNumber < 0) then … else ...

– If you change the convention somewhere, have to change it 
everywhere

– Conventions may not be obvious (implicit)
– Conventions may not be documented at all



Dependency Examples
• Implementation Dependency

• dealing with raw data structures introduces dependencies on the 
current implementation
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int* rainfallSeq;   // Array of ints. int rainInMarch = rainfallSeq[2];

– client code depends on the rainfall sequence being an array
– a real pain if you decide to use a linked list to store the rainfall 

sequence



Dependency Examples
• Behaviour dependency

• if two functions are expected to have some aspect of their behaviour 
in common, then that aspect had better stay the same
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void printNames() {
// Print out all the names.
for (int i = 0; i < numPeople; i++) {
printf(“Name is %s \n”, names(i));

}
}

void printNameAndAge(int i) {
// Print out the name and age of
// the person at the argument index.
printf(“Name is %s \n”, names(i));
printf(“Age is %d \n”, ages(i));

}



Dependencies
• A single dependency on its own may not look very 

threatening
• but if you let them proliferate, things go downhill rapidly

• What’s the cure?

16



The Cure
• Encapsulation

• “the grouping of related ideas into one unit, which can thereafter be 
referred to by a single name”

• Group related software elements (code and/or data) that have 
some common purpose or destiny

• Group so that: 
• dependencies are collected together inside encapsulation boundaries
• dependencies across encapsulation boundaries are minimised
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Some Benefits of Encapsulation
• Small parts are combined into a larger whole which has 

meaning
• reduces complexity
• refer to the whole instead of the parts

• By grouping dependencies inside encapsulation 
boundaries they become explicit
• makes them easier to spot and less pervasive

• Reduced dependencies across encapsulation boundaries
• fewer knock-on effects of a code change
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Low Level Encapsulation
• There are various levels of encapsulation
• Dependency examples seen so far can be cured with low 

level encapsulation
• encapsulating a constant into a name
• encapsulating an idea into a function
• encapsulating related functions into another function
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Curing Dependency
• Array example

• encapsulate the idea of a buffer size with a meaningful name then refer to it 
explicitly

• Using a meaningful name helps explain the purpose of a value
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char** buffer = new char*[45]; 
…
void printBuffer() {

for (int i = 0; i < 45; i++) …
}

bufSize = 45
char** buffer = new char*[bufSize]; 
…
void printBuffer() {

for (int i = 0; i < bufSize; i++) …
}



Curing Dependency
• Convention dependency

• positive account numbers belong to individuals, negative ones belong to companies
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if (order.accountNumber < 0) then … else ...

if (isCompany(order)) then … else ...

– encapsulate the underlying meaning into a function and refer to it 
explicitly

– Allows the convention to be changed to reflect new requirements 
without affecting existing code or function



Curing Dependency
• Implementation Dependency

• dealing with raw data structures introduces dependencies on the 
current implementation
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– encapsulate the monthly rainfall concept into a function

int* rainfallSeq;   // Array of ints.
…
int rainInMonth(int month) {

if (month < 1 or month > 12) then error;
return rainfallSeq[month - 1];

}

int rainInMarch = rainInMonth(3);

int* rainfallSeq;   // Array of ints. int rainInMarch = rainfallSeq[2];



Curing Dependency
• Behaviour dependency
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void printNames() {
// Print out all the names.
for (int i = 0; i < numPeople; i++) {
printf(“Name is %s \n”, names(i));

}
}

– as seen earlier, encapsulate the common code into a 
printName(…) function then call it from both

– removes code duplication and scope for inconsistency
– Makes changes to functions easier

void printNameAndAge(int i) {
// Print out the name and age of
// the person at the argument index.
printf(“Name is %s \n”, names(i));
printf(“Age is %d \n”, ages(i));

}



Good Low Level Encapsulation
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• Naming is important

– the name of a function should capture the idea being encapsulated
– the function’s comment should capture the programmer’s intent

• Avoid dependencies across encapsulation boundaries

– minimise side-effects of functions or modification of global variables 
within functions

– write functions which take arguments rather than reading global 
variables 

– Keep global variables to a minimum



Code-Data Dependency
• Will low level encapsulation solve all our dependency 

problems?
• No

• Critically, it doesn’t address data protection issues
• huge source of problems in many programs

• Need higher level encapsulation
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Motivation
• Consider a classic data structure, the stack
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• Very useful for bracket matching for example

– [[[a + b] * 4] + [c * d]]
– push opening brackets onto the stack
– pop a bracket each time you discover a closing bracket
– correct matching if you end with an empty stack

push pop



Traditional Implementation
• Implemented using an array and a top index
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int top

array of char stk

void push(char c) {
# Add argument character to the stack.
top = top + 1
stk[top] = c

}

char pop() {
# Remove top character and return it.
if (top < 0) then error
char res = stk[top]
top = top - 1
return res

}



Problems with Public Variables
• What if people are interested in the second-top character?

• easy, they can just use stk[top - 1]
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stk[top - 1]

array of char stk

top



Problems with Public Variables
• What if new boy Johnny uses stk[--top] by mistake?
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• He has used the decrement operator (--) so his function will give the right answer 
(once), but after that the stack is corrupt!

stk[--top]
top



Problems with Public Variables
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• The symptom could appear in one of your functions!

• You may have to go and debug it

• Johnny has messed up your afternoon!

• He hasn’t touched a single line of your code, but has still managed to make it 
misbehave 

– by tampering with public data
– By not understanding the ideas in use



Too Much Rope
• Why has this waste of time been allowed to happen?
• Programming languages are almost too flexible
• They invite quick dirty hacks to solve small problems

• quicker to shove in stk[top - 1] than write a function everyone can use

• This approach collapses in larger software
• complexity becomes unmanageable

• Need to impose additional structure and restrictions
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Private Data
• There is no reason why stk or top should be public to the 

whole program
• They should be made private to the stack functions

• make variables accessible only by those functions that have a 
fundamental right to know about them

• The compiler will complain if an attempt is made to access 
them from elsewhere
• Johnny’s erroneous modification wouldn’t even have compiled
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Public Interface
• If someone has a legitimate need to know the second-top 

character, add a function to the public interface
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char secondTop() {
# Return the character which is one below the top one in 
# the stack, or NULL if there are <=1 characters in the stack.
if (top < 1) then return NULL
return stk[top - 1]

}



High Level Encapsulation
• Means code and data is grouped together into an ‘abstract 

data type’ (ADT)
• Data is made private to the functions of the ADT
• Access to the data from outside the ADT is provided via the 

ADT’s public interface
• An ADT’s interface can be updated and its function 

extended
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functions and 
data grouped  
into an ADT



Bad Code Summary
• Try to keep complexity low as coding progresses

• bad code leads to complexity explosion

• Several types of bad code
• Lots of different forms of bad code

• Interdependency can be the most sinister
• because of its subtlety and pervasive effects

• Encapsulation
• protects against dependencies by making them explicit
• other benefits: conceptual clarity, reduced scope for bugs etc.
• low level - grouping lines of code into functions
• high level - grouping functions and data into ADTs
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ADT Overview
• Abstract Data Types
• Advantages and disadvantage
• Implementation 

• general strategy
• examples in C and Fortran 90

• A word on Object Orientation
• Conclusions
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Abstract Data Types
• An Abstract Data Type ties code and data together into a coherent logical unit
• An ADT is a user-defined type such that

• private data is hidden from external functions
• external functions can only access the data via a public interface
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• ADTs can be implemented in most programming 
languages



Abstract Data Types
• Why ‘Abstract’?

• they allow you to ‘abstract away’ from the lower level detail

• ADT concept used successfully for years
• but still not as prevalent as it could/should be

• It’s a genuine shift in programming emphasis away from 
logic and towards data
• as a program gets bigger it’s the complexity of the data which tends 

to cause the worst problems
• ADTs are a good (only?) way to manage that data complexity
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Advantages of ADTs
• They reduce the scope for bugs, as seen already

• it is impossible to corrupt a stack via its public interface
• you can’t access the private data directly to mess it up

• Ease of re-use
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# Stack for bracket matching.
Stack s
push(s, bracket1)
push(s, bracket2)

# Stack for brace matching.
Stack t
push(t, brace1)
push(t, brace2)



Advantages of ADTs
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• Interfaces
– there is now a clean interface between the data and the rest of the 

program
– if the implementation needs to change, you change it in one place only 

(the ADT), while the interface stays the same

• Opens the possibility for correctness proofs
– if you can define axioms for your functions



Disadvantages of ADTs?
• Accessing data via functions is slower than doing it 

directly
• But…

• the overhead is small
• the saving in development and debugging time for an ADT-based 

program will usually dwarf any runtime penalty 
• lots of programs spend 90% of the time in 10% of the code
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Implementing ADTs
• A notation for ADTs (UML)

• minus signs mean ‘private’
• from here on assume all ADT data is private

42

private data / 
attributes

public interface

private interface

-stk: Array of char
-top: int

new(): Stack
push(s: Stack, c: char)
pop(s: Stack): char
top(s: Stack): char
secondTop(s: Stack)
isEmpty(s: Stack): Boolean
size(s: Stack): int

-grow(s: Stack)

Stack

-stk
-top

:Stack

instance of the 
ADT at runtime



Implementing ADTs
• The Data

• define a new type (or struct in C) to represent the data of the ADT
• create instance(s) of that type at runtime
• refer to instances of the type using pointers (or equivalent) 

• cheaper to pass the pointer around than the thing it points to
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s
runtime instance 
of the new typepointer stk

top

:Stack



Implementing ADTs

• The Functions
• arrange for the contents of the new type to be accessible only by the ADT’s 

functions
• other functions cannot access the contents directly 
• they must go via the ADT’s public interface
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s

Other Functions

Stack’s Public Functions

Stack’s Private Functions stk
top

:Stack



Implementing ADTs
• Some programming languages are better suited to ADTs than 

others
• Stack example implemented in C and Fortran 90
• object-oriented languages are very well-suited to ADTs
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Implementing Stack in C

• declare the stack data as a 
struct called Stack

• declare the Stack functions

46

Header File: Stack.h

– define the stack functions
– add a function that creates a 

struct Stack (using malloc) 
and returns a pointer to it

– the other functions take a 
pointer to a struct Stack

Code File: Stack.c



Implementing Stack in C
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/* This module implements a stack */
/* of characters using an array. */

/* Private data. */
struct Stack {

char* stk;   /* Array for the stack. */
int      top;  /* Index of top element. */
int      size; /* Size of the array. */

}

/* Public interface. */
struct Stack* stackNew(void);
void stackPush(struct Stack* s, char c);
…

/* Private interface. */
static void stackGrow(struct Stack* s);

#include “Stack.h”

struct Stack* stackNew() {
/* Create a new stack and return */
/* a pointer to it. */
...

}

void stackPush(struct Stack* s, char c) {
/* Push the argument character */
/* onto the argument stack. */
...

}

...

Code File:  Stack.c Header File: Stack.h



Implementing Stack in C
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struct Stack* stackNew() {
/* Create a new stack and return a pointer to it. */
struct Stack* s = (struct Stack*)malloc(sizeof(struct Stack));
s->size = 1;
s->stk = (char*)malloc(s->size * sizeof(char));
s->top = -1;
return s;

}
…

void stackPush(struct Stack* s, char c) {
/* Push the argument character onto the argument stack. */
s->top++;
if (s->top >= s->size) stackGrow(s);
s->stk[s->top] = c;

}
...

Code File: Stack.c

s

stk
top
size

:Stack



Using an ADT in C
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#include “Stack.h”

main(int argc, char *argv[]) 
{

struct Stack* s = stackNew();
stackPush(s, 'Y');
stackPush(s, 'o');
stackPrint(s);
stackPop(s);
stackPrint(s);
stackDelete(s);

}

main.c

Yo
Y

output



Problems of Using C for ADTs
• In C there is no mechanism for making the contents of the 

struct Stack strictly private
• so have to rely on programmer discipline
• i.e. the one thing we didn’t want to rely on!

• Also, what if you want a stack of integers, say?
• For the int case, duplicate the code but...

• append ‘I’ (say) to the Stack type and all its functions
• replace char with int

• This is nasty
• code duplication always increases the scope for bugs
• behaviour dependency
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Benefits of Using C for ADTs
• So why bother?
• Even with C, adopting an ADT style still gives important 

benefits
• conceptual benefits of encapsulation
• coherent structure
• ease of re-use
• interfaces insulate you from changing implementation details
• fewer bugs, easier to fix
• easier to extend the program
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Stack in FORTRAN 90
• F90 is very well-suited to ADTs

• define a MODULE for the Stack
• define a new TYPE for the Stack’s data
• use PRIVATE to restrict access 
• implement the Stack’s functions as SUBROUTINEs or FUNCTIONs
• add a function to create a Stack using ALLOCATE

• Implementing a stack of characters as an array in F90 is 
perhaps not very realistic
• but it’s worth seeing an ADT in practice
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Stack in FORTRAN 90
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MODULE StackMod
IMPLICIT NONE

PRIVATE :: stackGrow  ! This fn will be private 
! to the ADT.

! Private data.
TYPE Stack
PRIVATE
CHARACTER, POINTER :: stk(:)  ! Pointer to 

! an array of characters.
INTEGER  top                    ! Index of the topmost char.
INTEGER  size                   ! Size of the array.

END TYPE Stack

CONTAINS

Stack.f90

! Public Interface.

SUBROUTINE stackNew(s)
! Allocate and initialise a new stack.
TYPE(Stack), INTENT(INOUT) :: s

s%size = 1
ALLOCATE(s%stk(s%size))
s%top = 0

END SUBROUTINE stackNew
...
SUBROUTINE stackPush(s, c)
! Push argument character onto the stack.
TYPE(Stack), INTENT(INOUT) :: s
CHARACTER, INTENT(IN) :: c

s%top = s%top + 1
IF( s%top .gt. s%size ) CALL stackGrow(s)
s%stk(s%top) = c

END SUBROUTINE stackPush
...



Building Entire Programs with ADTs
• ADTs aren’t just for basic data structures like Stack
• Ideally, every part of the program should be an ADT of some 

kind
• At runtime the program is a graph of ADT instances pointing to 

other ADT instances
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A Word on Object-Orientation
• OO languages (Smalltalk, Java, C++) build on the ADT 

concept
• they provide a slightly more advanced form of high level encapsulation

• Fundamentally, OO is ADTs with better syntax
• a ‘class’ is an abstract data type

• But inheritance allows easy customisation of ADTs 
• e.g. define a Car ADT as a specialisation of a Vehicle ADT 

• (Most) OO languages also solve the ‘stack of ints’ problem in 
C mentioned earlier

• Well worth learning about
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ADT Summary
• Abstract Data Types really can help you

• conceptual clarity, ease of re-use, reduced scope for bugs, use of 
interfaces etc.

• Relatively straightforward to implement in most languages
• It’s only a small step from ADTs to object orientation
• See the handout for C and F90 implementations of Stack
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