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Extending the problem

• The geologists wish to use the pollution calculation code 

in a more automated, high volume, approach.

• Take some raw measured data and feed this into the 

calculation code, then generating some final result answer 

which tells them where about in the pipe the pollution is 

above a specific threshold and the severity of the 

pollution.

- Input, raw, data provided in a directory of files – one for each pipe 

we are testing
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Your task…….

• You are supplied with the logic of each stage, but these 

are currently unconnected

- Complete the code so each stage runs on a UE and communicates 

with neighbouring stages

- You also need to consider termination via a poisoned pill

• Once you have done this you will calculate the load 

imbalance

- And as an advanced exercise look at addressing this
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Wash up of practical

• Sample solutions are available

- MPI P2P messages correspond well to communication between 

stages

- For the termination poisoned pill an empty (NULL) message can be 

sent

• But the stages of the pipeline are heavily imbalanced

- Not necessarily easy to give lightly loaded stages more work, but 

can do something to optimise the heavily loaded stage(s)
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0.03 3e-5 11.09 0.003 0.08

Runtime: 11.09s

LIF: 4.95



Let’s look at this with Paraver

MPI_Recv

MPI_Send



Duplicating the third stage

• All extra UEs make up duplicate stage three.

- No stage three UEs communicate, but instead work concurrently on 

different pieces of data

• Fairly simple to do, but termination does require a little 

more thought
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In Paraver



With the LIF what’s average?
• LIF = maximum load / average load

• This tells us how much faster the code could run if the 

load were perfectly balanced (1.0 being the best.)

• Assume we take the mean (i.e. sum up all values and 

divide by the number of UEs)

- But in extreme cases, where we have small amounts of load and 

one very large value then this can be misleading as the large value 

pollutes things.

- Instead the median can sometimes be a better approach

Code Runtime Mean LIF Median LIF

Linear 11.09s 4.95 366

Multiple stage three 0.81s 1.58 13


