
Parallel design patterns 

ARCHER course
Practical two: Pipeline for pollution problem



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


Extending the problem

• The geologists wish to use the pollution calculation code 

in a more automated, high volume, approach.

• Take some raw measured data and feed this into the 

calculation code, then generating some final result answer 

which tells them where about in the pipe the pollution is 

above a specific threshold and the severity of the 

pollution.

- Input, raw, data provided in a directory of files – one for each pipe 

we are testing

Read raw 

input data

Average 

samples

Solve 

Laplace 

PDE

Data analysis 

of results

Write out 

information

Raw data

filenames

Output

filenames



Your task…….

• You are supplied with the logic of each stage, but these 

are currently unconnected

- Complete the code so each stage runs on a UE and communicates 

with neighbouring stages

- You also need to consider termination via a poisoned pill

• Once you have done this you will calculate the load 

imbalance

- And as an advanced exercise look at addressing this

Read raw 

input data

Average 

samples

Solve 

Laplace 

PDE

Data analysis 

of results

Write out 

information

Raw data

filenames

Output

filenames



Wash up of practical

• Sample solutions are available

- MPI P2P messages correspond well to communication between 

stages

- For the termination poisoned pill an empty (NULL) message can be 

sent

• But the stages of the pipeline are heavily imbalanced

- Not necessarily easy to give lightly loaded stages more work, but 

can do something to optimise the heavily loaded stage(s)

Read raw 

input data

Average 

samples

Solve 

Laplace 

PDE

Data analysis 

of results

Write out 

information

Raw data

filenames

Output

filenames

0.03 3e-5 11.09 0.003 0.08

Runtime: 11.09s

LIF: 4.95



Let’s look at this with Paraver

MPI_Recv

MPI_Send



Duplicating the third stage

• All extra UEs make up duplicate stage three.

- No stage three UEs communicate, but instead work concurrently on 

different pieces of data

• Fairly simple to do, but termination does require a little 

more thought

Read raw 

input data

Average 

samples

Solve 

Laplace 

PDE

Data analysis 

of results

Write out 

information

Raw data

filenames

Output

filenames

Solve 

Laplace 

PDE

Solve 

Laplace 

PDE

0.03 3e-5

Running over 24 cores (i.e. 20 stage 

three UEs.)

0.03 0.12

0.39

Runtime: 0.81s

LIF: 1.58



In Paraver



With the LIF what’s average?
• LIF = maximum load / average load

• This tells us how much faster the code could run if the 

load were perfectly balanced (1.0 being the best.)

• Assume we take the mean (i.e. sum up all values and 

divide by the number of UEs)

- But in extreme cases, where we have small amounts of load and 

one very large value then this can be misleading as the large value 

pollutes things.

- Instead the median can sometimes be a better approach

Code Runtime Mean LIF Median LIF

Linear 11.09s 4.95 366

Multiple stage three 0.81s 1.58 13


