
Parallel design patterns 

ARCHER course
Comparing parallel algorithms



Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/

This means you are free to copy and redistribute the material and adapt and build on the 
material under the following terms: You must give appropriate credit, provide a link to the 
license and indicate if changes were made. If you adapt or build on the material you must 

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission 
before reusing these images.

2

https://creativecommons.org/licenses/by-nc-sa/4.0/


What’s the problem?

0

10

20

30

40

50

60

70

80

128 256 512 1024 2048
Number of UEs

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)



Speed up and parallel efficiency

S 𝑛 =
𝑇1

𝑇𝑛
E 𝑛 =

𝑆(𝑛)

𝑃

1

2

4

8

16

32

64

128

256

512

1024

16 32 64 128 256 512 1024

Parallel code

Ideal

Number of UEs

S
p
e
e
d
 u

p

0.32

0.37

0.5
0.41 0.27

0.38



So what’s the issue?

• Empirical studies are fine, but it requires an existing 

parallel code to benchmark and study

• Be careful what you claim, how many data points is 

enough to make certain claims?

• How can we predict performance and scalability at higher 

core counts or with certain modifications made to the 

algorithm?

• How much insight can we really get (i.e. where is my 

bottleneck?)

So how can we talk sensibly about parallel algorithms (i.e. 

compare them) without explicit measurement?



• A fraction, a, is completely serial

• Parallel runtime

- Assuming parallel part is 100% efficient

• Parallel speedup

• We are fundamentally limited by the serial fraction

- For a = 0, S = P as expected (i.e. efficiency = 100%)

- Otherwise, speedup limited by 1/ a for any P

• For a = 0.1; 1/0.1 = 10 therefore 10 times maximum speed up

• For a = 0.1; S(N, 16) = 6.4, S(N, 1024) = 9.9

Amdahl’s law



The serial section of code
“The performance improvement to be gained by parallelisation is limited 

by the proportion of the code which is serial”

Gene Amdahl, 1967



eCSE project on BGS spline model
• Model for predicting the geomagnetic field lines of the 

earth

- Ran in parallel but limited scalability and wanted to do more 

science with this model

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

1 2 4 8 16 32 64 128 256 512 1024

Number of UEs

R
u
n
ti
m

e
 (

s
e
c
o
n
d
s
)

S=1.37

E=0.69

S=1.78

E=0.45

S=2.30

E=0.29

S=2.54

E=0.16

S=2.80

E=0.09

S=3.10

E=0.05

S=3.29

E=0.03

S=3.38

E=0.01

S=3.42

E=0.008

S=3.46

E=0.003



In the serial world
• Algorithm time complexity - The rough growth rate of 

resources (specifically runtime) with respect to the input size

• Estimated by counting the number of elementary operations 

the algorithm is required to perform

– i.e. 8n + 12n2 where n is the 

number of input elements

– The worst case time complexity is 

most commonly used and here it 

would be O(n2)

• Provides a way to evaluate and 

compare sequential algorithms



Algorithm time complexity examples
for (i=0;i<50;i++) {

result=result+a[0]

}

for (i=0;i<n;i++) {

result=result+a[i]

}

for (i=0;i<n;i++) {

for (j=0;j<n;j++) {

result=result+a[i]

}

}

50 * (2 + 3 + 1) = O(1)

n * (2 + 3 + 1) = O(n)

n * (2 + n* (2 + 3 + 1)) = O(n*n)=O(n2)

• Concerned with how the runtime grows 

as a function of the input size (n)



• A number of different ways of modelling this

• Log P is one common approach in the literature

- L is the latency of the communication medium (cycles)

- o is the overhead of sending and receiving messages (cycles)

- g is the gap required between messages due to bandwidth limitations 

(cycles)

- P is the number of UEs

Example taken from http://slideplayer.com/slide/8123828/ where P=8, L=6, g=4, o=2

But much more complex in the parallel world!

http://slideplayer.com/slide/8123828/


What are we looking to optimise

1. Communication to computation ratio

Communication time

Computation time

Communication time
Computation 

time

Algorithm 

one

Algorithm 

two

Communication 

time
Computation time

Communication time

Computation time



What are we looking to optimise

2. Load balance between processes

UE0

UE1

Load Imbalance Factor (LIF):

maximum load / average load
Where 1 is ideal

UE0

UE1



What are we looking to optimise

3. Synchronisation costs

UE0

UE1

UE0

UE1



Parallelism overhead

Overhead of 

parallelism

Communication 

cost

Load balancing 

ratio

Synchronisation 

cost

Data 

transfer cost

• Needs to be balanced against the 

computational complexity

• Need to consider code maintainability



Can be obvious from code
if (rank == 0) {

for (i=0;i<1000;i++) {

a[i]=………

}

send a to rank 1

b=recv from rank 1

}

if (rank == 1) {

b=recv from rank 0

for (i=0;i<100;i++) {

a[i]=………

}

send a to rank 0

}

UE0

UE1



A slight improvement….
if (rank == 0) {

for (i=0;i<1000;i++) {

a[i]=………

}

send a to rank 1

b=recv from rank 1

}

if (rank == 1) {

for (i=0;i<100;i++) {

a[i]=………

}

b=recv from rank 0

send a to rank 0

}

UE0

UE1



More of an improvement….
if (rank == 0) {

for (i=0;i<550;i++) {

a[i]=………

}

send a to rank 1

b=recv from rank 1

}

if (rank == 1) {

for (i=0;i<550;i++) {

a[i]=………

}

b=recv from rank 0

send a to rank 0

}

UE0

UE1



Potentially even better
if (rank == 0) {

b=nonblocking recv from rank 1

for (i=0;i<550;i++) {

a[i]=………

}

nonblocking send a to rank 1

wait on all comms

}

if (rank == 1) {

b=nonblocking recv from rank 0

for (i=0;i<550;i++) {

a[i]=………

}

nonblocking send a to rank 0

wait on all comms

}

UE0

UE1



Still requires expertise…..
• Algorithm analysis is not simple and requires programmer 

insight & reasoning

- There are very many contributing factors

• Machine specific factors

• Compiler optimisations

• Underlying libraries and runtime

• Interconnect and current network traffic

• The time of day and year

• Theoretical ways can be unwieldy in practice, so often 

intuition is needed

- Consider what the overhead of parallelism is and how to reduce it



But we don’t get this for free!
• Efficiency

- Speed, memory, storage

• Scalability

- Large machines, large problems

• Simplicity of the code

- Development, debugging, verification, modification, maintenance

• Portability

- Software nearly always outlives its original target platform

• There is rarely one right answer and a good design often boils 

down to a number of tradeoffs

• Parallel optimisations can increase sequential time complexity


