
Compilers
Algorithms to executables

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Acknowledge EPCC as follows: “© EPCC, The University of Edinburgh, www.epcc.ed.ac.uk”

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

2

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

Outline

• What does compiling mean?

- Where do libraries come in?

• Anatomy of a compiler

• Compiler “optimisations”

• Can the compiler parallelise my code?

• Why are there differences in compilers?

- On ARCHER we have the Cray, Intel and GNU compilers

3

Compiling

What does compiling mean?

4

Compiling Overview

• HPC programs are usually written in a high-level, human-

readable language.

- Almost always Fortran, C, or C++ (“99%” of all HPC applications)

- Rarely something else

• Processors execute machine code (via instruction sets)

• Compilers convert high-level source code into machine

code.

- Also incorporate functionality from external libraries

- Usually try to optimise the code produced so that it runs as fast as

possible on the processors

5

Libraries

• Libraries provide functionality that is common across
multiple programs
- Low level – e.g. filesystem access. Usually not interesting to users

- Optimised numerical operations – e.g. linear algebra, Fourier
transformations

- Communications and parallelism – e.g. Message Passing Interface
(MPI), OpenMP

• The compiler combines the code in these libraries with the
code generated from the user’s program to produce the
final executable.
- Linking at run time is also possible – known as dynamic linking (or

shared libraries).

6

Anatomy of a compiler

How does it actually work?

7

Compiler Flow

Link

Stage

Compile

Stage
Source

code files

Machine code

object files

(*.o)

Libraries

Executable

binary file

8

Compile Stage

• Operates on individual source code files

• Transforms high level source to machine code
- Produces object files – usually one object file per source file

• Error and warning checking performed

• Optimisations are performed
- More on optimisations later

• Actually consists of a number of sub-stages
- Details are beyond this course

Compile

Stage
Source

code files

Machine code

object files

(*.o)

9

Compiler Flow

Link

Stage

Compile

Stage
Source

code files

Machine code

object files

(*.o)

Libraries

Executable

binary file

10

Link Stage

• Object files are combined (linked) to produce the actual

application

- Application is an executable binary file

• Any library code required by the application is also linked

at this stage

• Two forms of linking:

- Static – All code is combined into a single executable file

- Dynamic – Code from libraries is not combined into executable file,

instead this code is called and executed dynamically when the

executable is run

11

Illustration of library linking

Program A Program B

Dynamic libraries

(*.so)

Static linking at

compile time,

executable contains

the libraries

Dynamic linking at

runtime, no libraries

contained in the

executable and these are

loaded in when the

program runs

Program A

Static libraries

(*.a)

Program B

Static libraries

(*.a)

12

Compiler optimisations

What do they do? When should/shouldn’t I use them?

13

Optimisation

• Compiler will try to alter code so it runs more quickly

- This can be done at a number of levels (high-level, assembly code,

machine code) and can include the reordering of operations

• Note: although these are called optimisations, this is a

misnomer

- Resulting code is never optimal

- Seldom any iterative process

- Seldom any attempt to quantify effect of any transformations

- Usually a predetermined sequence of transformations that is known

to produce performance gains for some codes.

14

Optimisation strategies

• Loop index reordering

- To match memory layout or make more effective use of the cache

• Loop unrolling

- Reduces the number of (or avoids) termination checks & jumps

• Use of fast mathematical operators

- Non IEEE compliant mathematical operations can speed up

arithmetic

- But can no longer be sure the answer is reproducible or correct (as

disables correctness checking.)

• Function in-lining

- Avoiding a function call

• Operation reordering to allow for cache reuse

15

When to use optimisation

• Simple answer: always

• You should always use the performance gains given by
optimisation

• If you are debugging then you usually switch optimisation
off to ensure that the statements are being executed in
the order you specified

• Compilers commonly combine optimisations into different
levels
- O0, O1, O2, O3 where 0 is no optimisation and 3 the most

extreme

- Other optimisations (such as Os for executable size.)

16

A warning on optimisation

• Some optimisations can change the order of calculations

- Which means that your code might produce slightly different results

with or without that optimisation enabled.

- When enabling new optimisations it is always worth ensuring that

the code still produces “correct” results

• If you suspect that compiler optimisations are causing a

problem you can turn them off gradually

- All good compilers allow the specification of a range of optimisation

levels so you can turn it off gradually

- An easy initial test is to reduce the optimisation level, i.e. to go from

O3 to O2

17

Cray, Intel and GNU compiler flags
Feature Cray Intel GNU

Listing -ra (fnt)

-hlist=a (cc/CC)

-opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1 and

above

By default at -O2 and

above

By default at -O3 or using

-ftree-vectorize

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -fp-model

[fast|fast=2|precise|

except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx

-funroll-loops

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Debugging -g -g -g

18

Compilers and parallelisation

Can compilers parallelise my code?

19

Compiler parallelisation

• They cannot (yet) produce the general, high-level

parallelism required for scaling on multiple cores or nodes

- Compilers do not have the holistic view required to produce this

level of parallism

- Data parallelism is usually easier to produce automatically than

task parallelism

- Attempts have been made but with limited success so far.

• However, compilers often make a good job of

automatically parallelising floating point operations at the

CPU instruction level

20

Compiler parallelisation

• Compilers can produce parallel (or vector) instructions

- Makes use of “SIMD” (Single Instruction, Multiple Data) instructions

available on processor cores’ floating point units.

21

Different compilers

Why are there differences between compilers?

22

Standards and implementations

• Compilers implement the behaviour specified in agreed
standards for languages
- Multiple standards exist and change over time

- Standards cannot cover all cases and can contain ambiguities

- Some details are left unspecified

• Wherever the standard is not clear it is up to the compiler
architects to select the behaviour
- Leads to differences between compiler implementations

- Facilitates or hinders different optimisation possibilities

• Some compilers are open source (GNU), others commercial
(Intel) and can take advantage of detailed knowledge about
hardware behaviour

23

Summary

24

Summary

• The compiler is a hugely important part of the HPC

workflow

• Correct usage can provide significant performance

benefits

- With some caveats

• It is important to be aware of the differences between

compilers and whether your code requires a specific

compiler

25

