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Outline

• What does compiling mean?

- Where do libraries come in?

• Anatomy of a compiler

• Compiler “optimisations”

• Can the compiler parallelise my code?

• Why are there differences in compilers?

- On ARCHER we have the Cray, Intel and GNU compilers
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Compiling

What does compiling mean?
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Compiling Overview

• HPC programs are usually written in a high-level, human-

readable language.

- Almost always Fortran, C, or C++ (“99%” of all HPC applications)

- Rarely something else 

• Processors execute machine code (via instruction sets)

• Compilers convert high-level source code into machine 

code.

- Also incorporate functionality from external libraries

- Usually try to optimise the code produced so that it runs as fast as 

possible on the processors

5



Libraries

• Libraries provide functionality that is common across 
multiple programs
- Low level – e.g. filesystem access. Usually not interesting to users

- Optimised numerical operations – e.g. linear algebra, Fourier 
transformations

- Communications and parallelism – e.g. Message Passing Interface 
(MPI), OpenMP

• The compiler combines the code in these libraries with the 
code generated from the user’s program to produce the 
final executable.
- Linking at run time is also possible – known as dynamic linking (or 

shared libraries).
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Anatomy of a compiler

How does it actually work?
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Compile Stage

• Operates on individual source code files

• Transforms high level source to machine code
- Produces object files – usually one object file per source file

• Error and warning checking performed

• Optimisations are performed
- More on optimisations later

• Actually consists of a number of sub-stages
- Details are beyond this course
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Link Stage

• Object files are combined (linked) to produce the actual 

application

- Application is an executable binary file

• Any library code required by the application is also linked 

at this stage

• Two forms of linking:

- Static – All code is combined into a single executable file

- Dynamic – Code from libraries is not combined into executable file, 

instead this code is called and executed dynamically when the 

executable is run
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Illustration of library linking
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Compiler optimisations

What do they do? When should/shouldn’t I use them?
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Optimisation

• Compiler will try to alter code so it runs more quickly

- This can be done at a number of levels (high-level, assembly code, 

machine code) and can include the reordering of operations

• Note: although these are called optimisations, this is a 

misnomer

- Resulting code is never optimal

- Seldom any iterative process

- Seldom any attempt to quantify effect of any transformations

- Usually a predetermined sequence of transformations that is known 

to produce performance gains for some codes.
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Optimisation strategies

• Loop index reordering

- To match memory layout or make more effective use of the cache

• Loop unrolling

- Reduces the number of (or avoids) termination checks & jumps

• Use of fast mathematical operators

- Non IEEE compliant mathematical operations can speed up 

arithmetic

- But can no longer be sure the answer is reproducible or correct (as 

disables correctness checking.)

• Function in-lining 

- Avoiding a function call

• Operation reordering to allow for cache reuse
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When to use optimisation

• Simple answer: always

• You should always use the performance gains given by 
optimisation

• If you are debugging then you usually switch optimisation
off to ensure that the statements are being executed in 
the order you specified

• Compilers commonly combine optimisations into different 
levels
- O0, O1, O2, O3  where 0 is no optimisation and 3 the most 

extreme

- Other optimisations (such as Os for executable size.)
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A warning on optimisation

• Some optimisations can change the order of calculations

- Which means that your code might produce slightly different results 

with or without that optimisation enabled.

- When enabling new optimisations it is always worth ensuring that 

the code still produces “correct” results

• If you suspect that compiler optimisations are causing a 

problem you can turn them off gradually

- All good compilers allow the specification of a range of optimisation

levels so you can turn it off gradually

- An easy initial test is to reduce the optimisation level, i.e. to go from 

O3 to O2
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Cray, Intel and GNU compiler flags
Feature Cray Intel GNU

Listing -ra (fnt)

-hlist=a (cc/CC)

-opt-report3 -fdump-tree-all

Free format (ftn) -f free -free -ffree-form

Vectorization By default at -O1 and 

above

By default at -O2 and 

above

By default at -O3 or using 

-ftree-vectorize

Inter-Procedural Optimization -hwp -ipo -flto (note: link-time optimization)

Floating-point optimizations -hfpN, N=0...4 -fp-model 

[fast|fast=2|precise| 

except|strict]

-f[no-]fast-math or

-funsafe-math-optimizations

Suggested Optimization (default) -O2 -xAVX -O2 -mavx -ftree-vectorize

-ffast-math -funroll-loops

Aggressive Optimization -O3 -hfp3 -fast -Ofast -mavx 

-funroll-loops 

OpenMP recognition (default) -fopenmp -fopenmp

Variables size (ftn) -s real64 

-s integer64

-real-size 64

-integer-size 64

-freal-4-real-8

-finteger-4-integer-8

Debugging -g -g -g
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Compilers and parallelisation

Can compilers parallelise my code?
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Compiler parallelisation

• They cannot (yet) produce the general, high-level 

parallelism required for scaling on multiple cores or nodes

- Compilers do not have the holistic view required to produce this 

level of parallism

- Data parallelism is usually easier to produce automatically than 

task parallelism

- Attempts have been made but with limited success so far.

• However, compilers often make a good job of 

automatically parallelising floating point operations at the 

CPU instruction level
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Compiler parallelisation

• Compilers can produce parallel (or vector) instructions

- Makes use of “SIMD” (Single Instruction, Multiple Data) instructions 

available on processor cores’ floating point units.
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Different compilers

Why are there differences between compilers?
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Standards and implementations

• Compilers implement the behaviour specified in agreed 
standards for languages
- Multiple standards exist and change over time

- Standards cannot cover all cases and can contain ambiguities

- Some details are left unspecified

• Wherever the standard is not clear it is up to the compiler 
architects to select the behaviour
- Leads to differences between compiler implementations

- Facilitates or hinders different optimisation possibilities 

• Some compilers are open source (GNU), others commercial 
(Intel) and can take advantage of detailed knowledge about 
hardware behaviour
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Summary
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Summary

• The compiler is a hugely important part of the HPC 

workflow

• Correct usage can provide significant performance 

benefits

- With some caveats

• It is important to be aware of the differences between 

compilers and whether your code requires a specific 

compiler
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