
Thinking Persistently
Designing applications 
for persistent memory

Adrian Jackson
EPCC
a.jackson@epcc.ed.ac.uk
@adrianjhpc

mailto:a.jackson@epcc.ed.ac.uk


Persistence window 

Using non-volatile memory

• Key concept is persistent window
• When is data volatile? when is data persistent

• What is required to recover from application/hardware failure?

• What is required for your application?

• pmem_persist() or pmem_flush() pmem_drain() required to 
ensure data is on disk

• None of these are atomic!

• Failure mid drain could result in undefined data state



Volatile B-APM usage

• For correctness nothing special is required here, you can simply 
use the B-APM as volatile memory

• If you are using pmdk pmem then you will want to clean up files 
after your application finishes

• Otherwise you will take up space on the device(s) even after 
reboot

• Performance considerations are important
• Asymmetry of read and write may have a big impact

• Caching may help for write, but it depends on your access pattern 
(write after eviction requires read first)

Using non-volatile memory



Volatile performance considerations

for (i=0; i < nx; i++){

for (j=0; j < ny; j++){

if (pixcount%size == rank){

for (k=-d; k <= d; k++){

for (l= -d; l <= d; l++){

convolutionPartial[i][j] = convolutionPartial[i][j] + filter(d,k,l)*fuzzyPadded[i+d+k][j+d+l];

}

}

}

pixcount += 1;

}

}

Using non-volatile memory



Persistent B-APM usage

• Strategy needed to recover data on failure

• Transactional approach
• Use higher level pmem library functions

• Application logic
• Using low level pmem functions

• Main focus is hardware failure
• i.e. reboot but memory still intact

• Data resiliency another issue
• What if an NVDIMM fails
• Using low level pmem functionality there is no automatic redundancy
• No RAIDing

Using non-volatile memory



Consider what your application currently 
does

• Can your application cope with failure during I/O at the 
moment?

• Failure during POSIX I/O can easily lead to files in mixed states

• Failure even after I/O routines finish may lead to mixed states (O/S 
caching)

• However, persistent memory usage is likely to change your 
application design

• So consider this from the beginning

Using non-volatile memory



How to ensure consistency?

• Simplest option is to double up on key data:
• Work on current data in one set of arrays/variables

• Have previous iteration/timestep/update of data in another set of 
arrays/variables

• Once current data is persisted set a persistent variable to indicate 
which is correct

• Then switch to the other set of arrays

• This involves potential data copies and doubling memory 
requirements, so may not be desirable…

Using non-volatile memory



How to ensure consistency?

• Read from DRAM/pmem, write to DRAM
• Persistent to pmem

• Block dataset and keep working set in DRAM

• Persist as required

• Only persisting a subset of data at any one time, so only require 
duplication of this subset

• Finer granularity

• More sensible performance choices

Using non-volatile memory



How to ensure consistency?

• Guard persist calls with variable change, i.e.:

checkpoint_flag = -1

pmem_persist(checkpoint_flag, 1)

pmem_persist(checkpoint, 100000);

checkpoint_flag = 1

pmem_persist(checkpoint_flag, 1)

…

Load checkpoint flag

if(checkpoint_flag == 1){

read_checkpoint)

}

Using non-volatile memory



How to ensure consistency?

• Use B-APM for read only datasets
• Might sound silly, but for a range of applications may be sensible

• Bio-informatics, ML, image processing

• Large datasets that don’t get changed

Using non-volatile memory



Persistent safety

• As with filesystems, some level of redundancy is required to 
ensure data is safe

• This could be copies of data
• Both within a single run, and across runs

• Cleverer safety options are possible
• Erasure coding

• Append write

• Mirroring

• Consider using a higher level product
• i.e. DAOS

Using non-volatile memory



Visibility and Persistency

• Coherency != Persistency
• There are differences between threading and memory coherency 

(visibility) and persistence coherency

• Persistency coherency not enforced in hardware
• Changes to the same non-volatile memory location from different 

threads

• Avoid multi-threaded persisting unless you really know what 
you’re doing

Using non-volatile memory



Summary

• Working out what to put in NVRAM, when to persist, and when 
you can be sure something is safe is key

• This is the main challenge for using B-APM

• Using as a filesystem removes this issue
• Because POSIX

• For true B-A work filesystems will reduce achievable 
performance

• Better off buying SSDs

• But potentially a sensible stop-gap approach (think OpenMP rather 
than MPI)

Using non-volatile memory


