
Introduction to
Version Control

(part 2)
ARCHER Virtual Tutorial

Reusing this material

This work is licensed under a Creative Commons Attribution-
NonCommercial-ShareAlike 4.0 International License.

http://creativecommons.org/licenses/by-nc-sa/4.0/deed.en_US

This means you are free to copy and redistribute the material and adapt and build on the
material under the following terms: You must give appropriate credit, provide a link to the
license and indicate if changes were made. If you adapt or build on the material you must

distribute your work under the same license as the original.

Note that this presentation contains images owned by others. Please seek their permission
before reusing these images.

Outline
Part 1: common features of version control systems

Part 2: different models of version control, workflows:
• Centralised (client-server) version control (CVS, SVN)
• Distributed (peer-2-peer) version control (Git, Mercurial)
• Workflows
• Hosting & additional features: issue tracking, pull requests
• Choosing a version control system

Centralised version control
Examples of centralised (also known as client-server)
version control systems:

• CVS
• Subversion (SVN)
• Perforce

Centralised version control
Repository located on a central server

Repository

Centralised version control
Each user has a working copy of the repository

RepositoryAlice

Bob

r123r123

r123

Centralised version control
New users check out a fresh working copy

Repository

Carol

Dave

r123

r123

r123Alice

Bob

r123

r123

Centralised version control
Some users make changes to their working copy

RepositoryAlice

Bob

Carol

Dave

r123

r123

r123

r123 + Alice’s changes

r123 + Bob’s changes

Centralised version control
Users commit their changes to the repository

RepositoryAlice

Bob

Carol

Dave

r124

r123

r123

r123 + Alice’s changes

r123 + Bob’s changes

Centralised version control
Users commit changes to the repository

Ø First one to commit “wins”

RepositoryAlice

Bob

Carol

Dave

r124

r123

r123

r124

r123 + Bob’s changes

Centralised version control
Users commit changes to the repository

Ø First one to commit “wins”
Ø Others must update & resolve any conflicts before committing

RepositoryAlice

Bob

Carol

Dave

r124r124

r123 + Bob’s changes r124

r123

r123

Centralised version control
Users commit changes to the repository

Ø First one to commit “wins”
Ø Others must update & resolve any conflicts before committing

RepositoryAlice

Bob

Carol

Dave

r125r124

r123 + Bob’s changes + r124

r123

r123

resolved

Centralised version control

RepositoryAlice

Bob

Carol

Dave

r125r125

r125

r125

r125

Users periodically synchronise by updating their working
copies with the canonical content in the central repository

Centralised version control
• Enforces

• centralised workflow
• linear “global progress” view (incrementing revision numbers)

• Need to be online (able to connect to machine hosting
central repository) to commit any changes

• Past versions of files not stored locally, need to be online
• To check out any past committed versions of files
• To check the revision history (CVS)

• All commits visible by all users of a repository
• Can discourage committing, experimenting
• Can discourage creating many branches

Centralised version control
• Communications with server cost time
• Server is single point of failure, requires configuration &

maintenance:
• Downtime can affect many users
• Backups
• Security

Distributed version control
• Examples of distributed (also known as peer-2-peer)

version control systems:
• Git
• Mercurial

Distributed version control
Each user has their own repository copy stored locally
Central server is optional (in practice often useful)

Alice

Bob

Carol

Dave

Distributed version control
New users clone, i.e. copy, an existing repository
• Typically from a central server but can in principle
copy from each other

Alice

Bob

Carol

Dave

Distributed version control
Users make changes in their working copy and commit this
to their local repository è repositories diverge

Alice

Bob

Carol

Dave

changes
(on master branch or new
branch)

changes
(on master
branch or new
branch)

Distributed version control
To combine content from different repositories someone
has to fetch other people’s changes into their working copy
and perform merges there

Alice

Bob

Carol

Dave

Dave pulls from Carol, merges his and
Carol’s changes

Distributed version control
To combine content from different repositories someone
has to fetch other people’s changes into their working copy
and perform merges there

Alice

Bob

Carol

Dave

Or: Alice pulls from Carol and Dave and
merges their changes

Distributed version control
Often use a central server for convenience:
Ø Clone

Server
Alice

Bob

Carol

Dave

Distributed version control
Ø Commit local changes

Server
Alice

Bob

Carol

Dave

changes

changes

Distributed version control
ØPush changes to server repository

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• First to commit to server (e.g. Carol) “wins”

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• Dave has to first pull Carol’s changes from server and merge

them with his changes on master branch

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to master branch:
• Dave then pushes result back to master branch on server

for others

Server
Alice

Bob

Carol

Dave

Distributed version control
If changes were made to new branches:
ØCarol and Dave push to different branches on server
ØAlice can pull Carol and Dave’s distinct branches

and merge them

Server
Alice

Bob

Carol

Dave

Distributed version control
ØAlice then pushes result back to a single branch on server

(can be master branch or another branch) for others

Server
Alice

Bob

Carol

Dave

Distributed version control
• Don’t need to be online to commit changes
• Changes can be committed privately

• Encourages committing early on
• Encourages branching to commit e.g. experimental code

• Full revision history (log & past versions) available locally
• Can adopt workflows other than centralised for combining

content from contributors
• Many common operations are faster because no

communication with server needed

Distributed version control
How does the version control system know how to merge
content from different repositories?

How does it determine how far back to go in the revision
history of two branches being merged until it finds a
common ancestor?

No single canonical repository so no global revision
number (r###) that can be used to judge when commits
diverge

Distributed version control
Solution:
Compute an ID uniquely identifying each commit

Even better:
Compute an ID uniquely identifying each commit and its
preceding revision history

Git and Mercurial accomplish this using a hash function (SHA-1)
that generates a 40-digit hexadecimal number

If two commits from different repos have the same ID they have
identical revision histories and hence are common ancestors

Distributed version control

29ab2761… 29ab2761…

Carol’s branch Dave’s branch

46hhg315… 46hhg315…

k1ga6814… k1ga6814…

g116ag11…

881ja963…

alc6b173…

h1lnm2vu…

Start merging here

Common ancestors

Local commits

Distributed version control
• No need to set up and maintain a server
• No single point of failure
• As many backups as repository clones
• Hash IDs allow exact verification of integrity of data
• Branches play a very important role

• Used to communicate between repositories
• Mercurial and Git have very efficient implementations of branching

– branching is cheap, and merging is clever

Hosting & additional features
Distributed version control systems became very popular
over the past ~8 years (Git born 2005)

A number of websites (GitHub, Bitbucket, …) have helped
fuel this trend and exploit the potential of distributed version
control.

GitHub etc. offer repository hosting and management and
additional features that facilitate collaborative software
development

Hosting & additional features
Aditional features:
• Wiki to track and discuss bugs, feature requests etc.

tightly integrated with version control workflow
• “Pull request” mechanism allowing developers to clone

(fork) a repository, make changes, then suggest to the
original owner that these changes are integrated into the
parent repository

Site-installable web-based repository management
frameworks (e.g GitLab) offer similar features.

Demonstration using Git & Github
• Going to find a code repository on Github
• “Fork” a copy on Github that we will be able to write to
• Check out (clone) a local copy
• Make changes to a file
• Commit these changes
• Create a new file, add this to the repository
• Push these changes to the remote repository on Github

Distributed workflows

Reproduced under CC Attribution Non-Commercial Share Alike 3.0 license
see http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

Integration manager workflow:

Distributed workflows

Reproduced under CC Attribution Non-Commercial Share Alike 3.0 license
see http://git-scm.com/book/en/v2/Distributed-Git-Distributed-Workflows

“Dictator and lieutenants” workflow:

Which version control system should I use?
• If you are joining an existing project: whatever is already being

used! (unless there are big problems)

• Whatever your most important collaborators are used to

• Experiment!

• Git or Mercurial will allow you to immediately start committing
privately and are fast and powerful

• Especially Git offers powerful options
• But easier to get lost than Mercurial when starting out

References – further reading
• http://git-scm.com/book

• http://svnbook.red-bean.com/en/1.7/index.html

• http://www.github.com

